Spatial Analysis For Conservation and Sustainability
Houses & WUI
Housing growth is rampant, and much of it occurs in or near wildland vegetation, i.e., in the Wildland Urban Interface or WUI. Such housing growth is bringing homeowners closer to nature, which is great, but also posing numerous environmental problems including changes to fire regimes, introduction of invasive species, more human-wildlife conflicts, and habitat fragmentation.
Protected areas are cornerstones of biodiversity conservation, but they are in danger of becoming islands in a sea of human dominated landscapes. Our question was if protected areas may even foster devel- opment in their surroundings because they provide amenities that attract development, thus causing the isolation of the ecosystems they were designed to protect. Our study analyzed historic aerial photographs and topographical maps to reconstruct road development and building growth within and around Indiana Dunes and Pictured Rocks National Lakeshores in the U.S. Great Lakes region from 1938 to 2005, and to estimate the effects of park creation in 1966 on changes in landscape patterns. Historic U.S. census housing density data were used as a baseline to compare observed changes to. Our results showed that park establishment was effective in reducing and stopping the fragmenting impact of development within park boundaries. However, increased amenity levels following park establishment led to enhanced development in the surroundings of both parks. In the extreme case of Indiana Dunes, building density outside the park increased from 45 to 200 buildings/km2 and road density almost doubled from 3.6 to 6.6 km/km2 from 1938 to 2005. Development rates of change were much higher than in the broader landscape, particularly after park establishment. The potential amenity effect was up to 9500 new buildings in the 3.2-km zone around Indiana Dunes between 1966 and 2005. For Pictured Rocks the absolute effect was smaller but up to 70% of the observed building growth was potentially due to amenity effects. Our ? ndings highlight the need for conservation planning at broader scales, incorporating areas beyond the boundaries of protected areas.
Wildland fire is a major concern in the wildland-urban interface (WUI), where human structures intermingle with wildland vegetation. Reducing wildfire risk in the WUI is more complicated than in wildland areas, owing to interactions between spatial patterns of housing and wildland fuels. Fuel treatments are commonly applied in wildlands surrounding WUI communities. Protecting the immediate surroundings of structures and building with fire-resistant materials might be more effective, but limited resources and uncooperative homeowners often make these impractical. Our question was how to allocate fuel treatments in the WUI under these constraints. We developed an approach to allocate fuel breaks around individual or groups of structures to minimise total treatment area. Treatment units were ranked according to their housing density and fire risk. We tested this method in a Wisconsin landscape containing 3768 structures, and found that our treatment approach required considerably less area than alternatives (588 v. 1050 ha required to protect every structure independently). Our method may serve as a baseline for planning fuel treatments in WUI areas where it is impractical to protect every single house, or when fire-proofing is unfeasible. This approach is especially suitable in regions where spotting is a minor cause of home ignitions.
Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are dif ? cult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human- caused or natural, is non-random. Thus, predictions from ? re simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of ? re simulation models has never been systematically explored. Our goal was to assess the difference in ? re simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the in ? uence of random and non-random ignition locations and normal and extreme weather conditions on ? re size distributions and spatial patterns of burn probability. Under extreme weather conditions, ? res were signi ? cantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced signi ? cantly larger ? res than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in ? re simulation models may substantially in ? uence the spatial predictions of ? re spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the ? re simulations are conducted under extreme weather conditions when ? re spread is greatest.
Urbanization causes the simplification of natural habitats, resulting in animal communities dominated by exotic species with few top predators. In recent years, however, many predators such as hawks, and in the US coyotes and cougars, have become increasingly common in urban environments. Hawks in the Accipiter genus, especially, are recovering from widespread population declines and are increasingly common in urbanizing landscapes. Our goal was to identify factors that determine the occupancy, colonization and persistence of Accipiter hawks in a major metropolitan area. Through a novel combination of citizen science and advanced remote sensing, we quantified how urban features facilitate the dynamics and long-term establishment of Accipiter hawks. Based on data from Project FeederWatch, we quantified 21 years (1996–2016) of changes in the spatiotemporal dynamics of Accipiter hawks in Chicago, IL, USA. Using a multi-season occupancy model, we estimated Cooper’s (Accipiter cooperii) and sharp-shinned (A. striatus) hawk occupancy dynamics as a function of tree canopy cover, impervious surface cover and prey availability. In the late 1990s, hawks occupied 26% of sites around Chicago, but after two decades, their occupancy fluctuated close to 67% of sites and they colonized increasingly urbanized areas. Once established, hawks persisted in areas with high levels of impervious surfaces as long as those areas supported high abundances of prey birds. Urban areas represent increasingly habitable environments for recovering predators, and understanding the precise urban features that drive colonization and persistence is important for wildlife conservation in an urbanizing world.
The wildland–urban interface (WUI) is the area where houses meet or intermingle with undeveloped wildland vegetation. The WUI is thus a focal area for human– environment conflicts, such as the destruction of homes by wildfires, habitat fragmentation, introduction of exotic species, and biodiversity decline. Our goal was to conduct a spatially detailed assessment of the WUI across the United States to provide a framework for scientific inquiries into housing growth effects on the environment and to inform both national policymakers and local land managers about the WUI and associated issues. The WUI in the conterminous United States covers 719 156 km2 (9% of land area) and contains 44.8 million housing units (39% of all houses). WUI areas are particularly widespread in the eastern United States, reaching a maximum of 72% of land area in Connecticut. California has the highest number of WUI housing units (5.1 million). The extent of the WUI highlights the need for ecological principles in land-use planning as well as sprawl-limiting policies to adequately address both wildfire threats and conservation problems.
Federal wildland fire policy in the United States has been substantially revised over the past 10 years and new emphasis has been given to the wildland– urban interface (WUI), which creates a need for information about the WUI’s location and extent. We operationalized a policy definition published in the Federal Register (US Department of the Interior [USDI] and US Department of Agriculture [USDA]), 2001, Urban wildland interface communities within vicinity of federal lands that are at high risk from wildfire. Fed. Regist. 66(3):751–777) to create national maps and statistics of the WUI to guide strategic planning. Using geographic information system analysis, we evaluate the national WUI by altering the definition’s parameters to assess the influence of individual parameters (i.e., housing density, vegetation type and density, and interface buffer distance) and stability of outcomes. The most sensitive parameter was the housing density threshold. Changes in outputs (WUI homes and area) were much smaller than parameter variations suggesting the WUI definition generates stable results on most landscapes. Overall, modifying the WUI definition resulted in a similar amount of WUI area and number of homes and affected the precise location of the WUI.
The wildland-urban interface (WUI) is the area where houses and wildland vegetation meet or intermingle, and where wildfire problems are most pronounced. Here we report that the WUI in the United States grew rapidly from 1990 to 2010 in terms of both number of new houses (from 30.8 to 43.4 million; 41% growth) and land area (from 581,000 to 770,000 km2; 33% growth), making it the fastest-growing land use type in the conterminous United States. The vast majority of new WUI areas were the result of new housing (97%), not related to an increase in wildland vegetation. Within the perimeter of recent wildfires (1990–2015), there were 286,000 houses in 2010, compared with 177,000 in 1990. Furthermore, WUI growth often results in more wildfire ignitions, putting more lives and houses at risk. Wildfire problems will not abate if recent housing growth trends continue.
Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern “Noah’s Ark.” Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.
Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern “Noah’s Ark.” Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.
People enjoy building houses in beautiful places where they are surrounded by the beauty of nature. Unfortunately, when wildfires rage through forests, these homes are often caught in the fire’s path. As more and more people attempt to enjoy the amenities of building a home in sparsely populated areas, communities increasingly face tough decisions whether to pay for protecting these homes from wildfires that destroy property and take lives. Wildfire costs are not trivial. During the twelve-years from 1999-2011, an average of 1,354 houses were destroyed and approximately $2 billion was spent fighting wildfires, annually. Ideally, communities would have information to help predict how wildfires spread and how to minimize the number of houses lost during wildfires. Unfortunately, a lot of basic information about what happens to a community after a wildfire rips though it is unknown. Patricia Alexandre and her colleagues recently published a study that makes a first step towards describing what happens to communities across the country following wildfire events. While their results suggest that the conventional wisdom that rebuilding always happens has little support and how much is rebuilt varies across the country, they were surprised to find that new housing constructed in burned areas was happening at higher rates than rebuilding, and often at higher rates than in surrounding non-fire areas, adding complexity to the discussion.
To be clear, Alexandre’s research is not intended to answer whether people should rebuild following a wildfire, but to provide a snapshot of what the patterns were within affected communities across the country following recent fires. This is an important step to take to see whether patterns are consistent across a large scale and provides a dataset to begin drawing conclusions from observed rebuilding patterns. To do this work, Alexandre refined a method utilizing historical images available on Google Earth and then recruited help from students to go through and hand-digitize structures present before a fire as well as all structures that had burned, and consequently been rebuilt within five years following a fire. Nationally, the team found rebuilding rates averaged 25%, with much higher rates in the western states. For example, rates in California approached 70% of structures rebuilt following a fire. The surprising results from Alexandre’s work is first that not all burned communities are re-building within five years following a fire, and second that new buildings were constructed in burned areas at similar or even higher rates. These results indicate that communities are not just replacing homes lost to wildfires, but many are putting new homes into burned areas.
Alexandre offers multiple reasons that homeowners may build, and rebuild, in burned areas, which are inherently fire prone. One reason is that homeowners may find the value they get from living in fire-prone areas worth the fire risk, some insurance policies require rebuilding in the same spot following a fire, and many homeowners do not have the finances to relocate to an area with lower fire risk. While the reasons to build and rebuild in fire prone areas likely vary widely across the country, Alexandre’s research provides a valuable baseline to evaluate future policies or practices that communities might use to mitigate wildfire damages. Whether it’s mandating that new or rebuilt structures be constructed with safer materials, or prohibiting rebuilding in burned areas, the best way to evaluate the efficacy of these policies is to compare them to the housing patterns before and after fire events. Alexandre’s research allows that comparison to take place and hopefully inform local initiatives that could save property, money and lives.”
In an unusual twist, Paul Schilke’s interest in terrestrial birds has led him to study aquatic systems.
Many aerial insectivore bird species, such as swallows and flycatchers, have been declining since the 1980s, but researchers aren’t sure why because little is known about how these birds use the resources around them. This guild is defined by its habit of capturing flying insects in midair, as opposed to the gleaner guild that picks insects off of substrates like leaves or twigs. Many of these flying insects begin their lifecycle in aquatic systems, so Paul thought that the differential decline in the aerial feeding guild might lie in the lakes and streams.
Using records from 317 locations within the Chequamegon-Nicolet National Forest in Northern Wisconsin, Paul compared presence of the aerial and gleaner insectivore guild members to estimated insect productivity in nearby lakes and streams, controlling for habitat differences (Figure 1). He estimated insect probability using a model from Bartrons et al. (2013), which used an extensive meta-analysis to determine the relationships between aquatic insect productivity and basic properties of lakes and streams such as temperature, surface area, and clarity. As expected given their feeding behavior, gleaners preferred forested habitats while aerial insectivores preferred more open areas. Interestingly, despite both guilds being insectivorous, aerial feeders demonstrated a strong preference for sites with higher insect inputs, while gleaners had no response (Figure 2).
Paul hopes that a better understanding of the food resources of aerial insectivores can lead to better conservation measures, and hopefully reverse their long term decline. He will continue his work as a PhD student in the SILVIS lab.