
lable at ScienceDirect

Environmental Modelling & Software 26 (2011) 583e592
Contents lists avai
Environmental Modelling & Software

journal homepage: www.elsevier .com/locate/envsoft
Effects of ignition location models on the burn patterns of simulated wildfires

Avi Bar Massada a,*, Alexandra D. Syphard b, Todd J. Hawbaker c, Susan I. Stewart d, Volker C. Radeloff a

aDepartment of Forest and Wildlife Ecology, University of WisconsineMadison, 1630 Linden Drive, Madison, WI 53706, USA
bConservation Biology Institute, 10423 Sierra Vista Avenue, La Mesa, CA 91941, USA
cRocky Mountain Geographic Science Center, U.S. Geological Survey, PO Box 25046, MS 516, Denver, CO 80225, USA
dNorthern Research Stations, U.S. Forest Service, 1033 University Avenue, Suite 360, Evanston, IL 60201, USA
a r t i c l e i n f o

Article history:
Received 8 September 2010
Received in revised form
15 November 2010
Accepted 29 November 2010
Available online 31 December 2010

Keywords:
Wildfire
Burn probability
Ignition
FARSITE
* Corresponding author. Tel.: þ1 608 261 1050; fax
E-mail address: barmassada@wisc.edu (A. Bar Mas

1364-8152/$ e see front matter � 2010 Elsevier Ltd.
doi:10.1016/j.envsoft.2010.11.016
a b s t r a c t

Fire simulation studies that use models such as FARSITE often assume that ignition locations are
distributed randomly, because spatially explicit information about actual ignition locations are difficult to
obtain. However, many studies show that the spatial distribution of ignition locations, whether human-
caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may
be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of
fire simulation models has never been systematically explored. Our goal was to assess the difference in
fire simulations that are based on random versus non-random ignition location patterns. We conducted
four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the
influence of random and non-random ignition locations and normal and extreme weather conditions on
fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires
were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha
and 230.1 ha, respectively), but burn probability maps were highly correlated (r ¼ 0.83). Under normal
weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and
13.3 ha, respectively), and the spatial correlations between burn probability maps were not high
(r ¼ 0.54), though the difference in the average burn probability was small. The results of the study
suggest that the location of ignitions used in fire simulation models may substantially influence the
spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random
ignition location model may be minimized if the fire simulations are conducted under extreme weather
conditions when fire spread is greatest.

� 2010 Elsevier Ltd. All rights reserved.
1. Background

The spatio-temporal patterns of wildfire occurrence, spread, and
behavior depend on the interactions among climate, fuels, topog-
raphy, ignition, and suppression (Falk et al., 2007; Moritz et al.,
2005; Pyne et al., 1996). Ignition timing and location may be
especially important as they interact with weather patterns
(temperature, moisture, and wind), fuels (types, loads, and spatial
configurations), and topography (elevation, slope, and aspect) to
determine fire behavior and spread and ultimately the extent and
intensity of the resulting fires (Bessie and Johnson,1995; Cary et al.,
2009; LaCroix et al., 2006). While there are two general sources of
ignitions, natural and human, both are associated with complex
drivers that influence where and when they occur (Sturtevant and
: þ1 608 262 9922.
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Cleland, 2007; Krawchuk et al., 2006). Although the factors that
influence their spatial distribution may differ, both natural and
human ignition patterns are non-random, and they vary in both
timing and location. Many studies show that the location of igni-
tions strongly influences subsequent spatio-temporal patterns of
wildfire and resulting impacts (Cardille et al., 2001; Kasischke et al.,
2002; Prestemon et al., 2002; Syphard et al., 2007). Despite the
importance of ignition location on fire extent and effect, most fire
simulation studies have been conducted using the assumption that
ignitions are distributed randomly across space and time.

One of the primary reasons that fire simulation studies have used
the assumption of random ignition locations was that spatially
explicit information about actual ignition locations was difficult to
obtain. However, two recent developmentsmayhelp to decrease this
reliance on random ignition patterns; 1) the increasing quality and
availabilityof spatial ignitiondata, and2) the increasing awareness of
the role of human ignition in alteringfire regimes (Keeleyet al.,1999;
Pyne, 2001). In fact, recent studies have incorporated methods
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(e.g., statistical modelling, point pattern analysis, and kernel density
surfaces) of analyzing ignition location data to explain and map the
spatial patterns of ignitions orfire occurrence locations. Somepapers
have focused exclusively on modelling lightning occurrence using
biophysical variables (Diaz-Avalos et al., 2001; Wotton and Martell,
2005), while others have incorporated both anthropogenic and
biophysical variables to model human and lightning ignition loca-
tions (Genton et al., 2006; Yang et al., 2007), or just human ignition
locations (Martinez et al., 2009; PewandLarsen, 2001; Syphard et al.,
2008). Collectively, these studies show that the spatial distributionof
both human and lightning ignitions can be estimated and mapped
using readily available social and biophysical data layers. Social and
biophysical data can be combined with historical fire records to
generate empirical ignition location models that predict spatially
explicit ignition probabilities. In general, up-to-date data about fuel
characteristics, coupled with the spatial location of human devel-
opment and activities may be able to predict areas of increased
ignition probabilities due to anthropogenic causes. Such data are
region-specific though, and highlight the need to develop unique
ignition models for different regions, depending on their social and
biophysical properties. Important social variables include (among
others): distance to development, level of development, distance to
roads or road density, and distance to trails (Syphard et al., 2008);
population density, housing density, median home value, and
distance to railroad (Sturtevant and Cleland, 2007). Important
biophysical variables include: temperature, elevation, slope gradient,
topographic aspect (south-westness), and vegetation type (Syphard
et al., 2008); water holding capacity, historical fire rotation, precipi-
tation, percentage of a given land cover class, and soil class
(Sturtevant and Cleland, 2007). Among these, vegetation type (fuel)
poses a specific challenge to modelers, since it changes with time
according to successional processes.

For example, we compared three ignition location models that
were developed for different regions (Table 1). Syphard et al. (2008)
used a multiple logistic regression model to predict ignition prob-
abilities in the Santa Monica Mountains, California. Given that
almost all of the ignitions in that area are human-caused, they found
that human variables that described the distance to anthropogenic
features (development, roads, and trails), together with the overall
amount of wildland urban interface (WUI) area, were the best
predictors offire ignition. Two biophysical variables, land cover type
and minimum January temperature, were also significant.

Analyzing amuch larger area, Sturtevant andCleland (2007)used
classification and regression trees (CART) to explain fire occurrence
in NorthernWisconsin. Again, they found that the human variables
were the most important, including housing density, road density,
and distance to railroads. They also found that a purely social vari-
able, the percentage of owner occupied homes, was an important
variable. The most important biophysical variables were land cover
Table 1
Comparison of three existing empirical ignition location models.

Syphard et al. 2008

Model type Multiple logistic regression
Spatial extent (km2) 600
Anthropogenic predictive variables

(in order of importance)
Distance to development
Distance to roads
Level of WUI
Distance to trails

Biophysical predictive variables
(in order of importance)

Vegetation type
January minimum temperature
(expressed as percentage of agricultural and grassland cover) and
forest flammability.

The third study, by Yang et al. (2007), quantified the spatial and
temporal patterns of fire ignitions in the Missouri Ozark Highlands.
Using aPoissonmultiple regression, themainhumanvariables again
reflected development (distance to towns, roads), and social aspects
(type of land ownership). The biophysical variables were related to
land cover type (with mixed forest being the most important, fol-
lowedbydeciduous forestandgrassland), aswell as slopeandaspect
(which affects flammability by altering fuel moisture conditions).

Since the 1980s, fire simulation modelling has emerged as
a powerful tool for wildfire research as well as for fire management
and suppression planning (e.g., the US Forest Service RAVAR (http://
www.fs.fed.us/rm/wfdss_ravar/)), and studies of fire and vegetation
dynamics (Keaneet al., 2004). Thereare several deterministic spatially
explicit fire simulation models, but the most commonly used and
widely recognized model is FARSITE (Finney, 1998), while other
models include MTT (Finney, 2002); FireStation (Lopes et al., 2002);
Prometheus (Tymstra et al., 2010), EMBYR (Hargrove et al., 2000); and
more recently the dynamic fire extension of LANDIS-II (Sturtevant
et al., 2009). Examples of how these models are used include: the
assessment of fire risk in a Mediterranean landscape (Carmel et al.,
2009); predicting threat to structures in the wildland urban inter-
face (Bar Massada et al., 2009); evaluating the habitat of an endan-
gered owl species (Ager et al., 2007); assessing fire potential in
Brazilian Savannahs (Mistry and Berardi, 2005); analyzing the effects
of landscape management on fire spread (LaCroix et al., 2006); and
evaluatingtheeffectof fuel treatment strategiesonfire risk (Ageret al.,
2006; Miller et al., 2008; Parisien et al., 2007) and behavior (Duguy
et al., 2007; Schmidt et al., 2008; Stephens, 1998; Stratton, 2004;
Suffling et al., 2008; van Wagtendonk, 1996). In these applications,
fire spreadhasbeen simulated fromoneormore ignitionpoints. Eight
of these studies used random ignition locations, four used locations
based on human-decisions, one used the ignition locations of histor-
icalfires,andone(Milleretal., 2008)usedanempirical ignitionmodel.

Since ignition locations may have a significant effect on subse-
quent fire behavior and spread (depending on the spatial configu-
ration of fuels in the vicinity of the ignition point), it is possible that
fire simulation studies based on random ignition locations generate
inaccurate results. However, the magnitude of such inaccuracies is
hard to quantify because ignition location models will vary among
study areas and climatic conditions. Since fire simulation models
are being increasingly used, both for research and management
purposes, the problem of using an incorrect ignition location model
has significant implications for the validity of the results obtained
from these models, and for any interpretations based on those
results. Therefore, it is desirable to quantify the effects of using
random versus empirical ignition location models in spatially
explicit fire simulation models.
Sturtevant and Cleland 2007 Yang et al. 2007

Classification and regression trees Poisson regression
58,000 1287
Housing density
Road density
%owner occupied homes
Distance to railroads

Distance to town
Distance to road
Ownership e public
Ownership e private

%agriculture/grassland cover
Relative forest flammability

Pine-Oak mixed forest
Deciduous forest
Grassland
Slope
Aspect category (flat)
Aspect category (xeric)
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Fig. 1. The Santa Monica Mountains, California, USA.

Fig. 2. Random (a) and empirical (b) ignition points used for the FARSITE simulations.
The non-random ignitions are based on the model of Syphard et al. (2008).
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The goal of this research was to quantify the effects of using
a random versus an empirical ignition location model on the spatial
pattern of fire occurrence and spread in FARSITE. We also assessed
whether differentweather conditions (normal and extreme) interact
with ignition models to affect estimates of extent and location of
modeled fires. The domain of our simulations was a mountainous
Mediterranean landscape in southern California using a multiple
simulation approach with FARSITE.

2. Methods

2.1. Study area

The study area included the majority of land within the Santa Monica Mountain
National Recreational Area, which is an administrative unit that encompasses
approximately 60,000 ha of rugged, coastal mountains adjacent to Los Angeles, CA
(Fig. 1). The mountains have a Mediterranean climate, characterized by cool, wet
winters and warm to hot, dry summers. The vegetation is dominated by chaparral
(approximately 60%) and coastal sage scrub (approximately 25%) shrublands, which
are highly flammable due to low decomposition rates, dense community structure,
and low fuel moisture e particularly in the late summer and autumn after a long
drought (Conrad and Regelbrugge, 1994; Radtke et al., 1982). The fire frequency is
moderate in the Santa Monica Mountains (average fire return interval of 32 years),
and has been increasing steadily over the last 75 years (NPS, 2005). More than 95% of
the ignitions are caused by humans, and the largest fires, which account for most of
the area burned, tend to occur during extreme fire weather fanned by Santa Ana
winds. Because fire cannot easily be controlled during high-wind conditions, the
shrublands burn in large, stand-replacing, high-intensity fires that explode across
the landscape (Keeley and Fotheringham, 2003).

2.2. Ignition location models

We used two ignition locations models in this study: an empirical model by
Syphard et al. (2008), and a random model. To develop the empirical model of
ignition locations, we related multiple anthropogenic and biophysical variables to
ignition occurrence locations (126 ignitions from 1981 to 2003) using a multiple
logistic regression modelling approach (Syphard et al., 2008). It is impossible to
select true absence point locations for ignitions because areas that have not expe-
rienced ignitions in the past could potentially ignite in the future. Therefore, we
compared ignition point locations to a random sample of 700 control points
distributed across the landscape. This design enabled us to determine whether the
explanatory variables influenced the 126 ignition locations differently than what
would be expected by chance.

After exploring bivariate regression models for each of our explanatory variables
and checking to ensure that there were no collinearity problems (by implementing
the variance inflation factor collinearity diagnostic procedure), we entered the vari-
ables into a multiple logistic regression model and selected the final model through
a backwards stepwise elimination process using the Akaike Information Criterion
(AIC) (Venables and Ripley, 1999). The variables retained in the multiple-regression
model indicated that ignitions were most likely to occur close to development
(p < 0.001), roads (p ¼ 0.002), and trails (p < 0.08); in areas with warmer January
temperatures (p¼ 0.016); and differentially according to vegetation type (p¼ 0.002),
and amount of surrounding Wildland Urban Interface (p ¼ 0.011). We evaluated the
performance of the multiple-regression model through a leave-one-out cross-vali-
dation approach, which iteratively drops a single data point (i.e., an ignition), refits
the model, and predicts the probability of ignition at the data point (Bautista et al.,
1999). The overall area under the curve (AUC) of the cross-validated model was
0.71. The AUC reflects the probability that our model would correctly distinguish
between an ignition and non-ignition point when those points are drawn at random.

We converted our multiple-regression model into a predictive map surface by
applying the formula and coefficients to the entire study area using GISmap layers of
the explanatory variables. For the logistic regression, if we let Pi be the probability of
an ignition in cell i, and xji be the value of the jth covariate in cell i, the formula is:

Pi ¼ expfb0 þ b1x1i þ b2x2i þ.þ bnxnig=ð1þ expfb0 þ b1x1i þ b2x2i þ.

þ bnxnigÞ
where b0 is the intercept and bn are regression coefficients for the explanatory
variables, xn. The result was a continuous map depicting the relative probability of
fire ignition across the study area

Based on the predictive map generated from the statistical modelling, we
generated 6000 ignition locations as input for the fire simulation modelling (Fig. 2)
using the ‘generate random points’ (and use raster as a probability distribution) tool



Fig. 3. Daily averages of wind speed (a) and relative humidity (b) as measured by the
Malibu Hills RAWS station in November 2007. The period of Corral fire is highlighted.
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in Hawth’s Analysis Tools for ArcGIS (Beyer, 2004). When the predictive map was
used as a probability distribution, ignition probability influenced the locations of
ignition points since map pixels with higher ignition probabilities were more likely
to be assigned an ignition point. For the random ignition location model, we used
the same software tool to randomly generate 6000 ignition locations across the
study area, this time without any consideration of the predictive map (Fig. 2).

2.3. Fire model

Fire simulations were conducted using the Fire Area Simulator (FARSITE, Finney,
1998). FARSITE is a spatially explicit fire simulationmodel that is based on Huygens’s
principle of wave propagation, and it determines the expansion of a polygonal fire
front through time (Richards, 1990). FARSITE distinguishes between two fire
behaviors and uses separate models for surface fires (Rothermel, 1972) and crown
fires (Van Wagner, 1977). The operation of FARSITE requires input data capturing
weather, fuels, and topographic elements. Weather data have to be supplied as
streams of temporal data for the duration of the simulation time period, consisting
of minimum and maximum daily temperature and relative humidity (and their
corresponding time of day), daily precipitation, and hourly wind speed, hourly wind
direction, and hourly cloud cover. The properties of different fuel types in a study
area can either be represented as one of the 13 Anderson fuel models (Anderson,
1982), the 40 Scott and Burgan fuel models (Scott and Burgan, 2005), or as
custom fuel models. Additional input data include GIS raster layers of elevation,
slope, aspect, canopy cover, crown height, crown base height, and crown bulk
density. The user defines the ignition points and the length of the simulation. The
model generates the following outputs: fire arrival time, fireline intensity, flame
length, rate of spread, heat per unit area, reaction intensity, crown fire activity, and
spread direction.

We chose to use FARSITE for the analysis because it is based on the simulation
mechanism most widely used in management and research (FARSITE and FSPro,
used by the Forest Service, share a simulation mechanism). Previous research has
shown that the accuracy of FARSITE ranges from low (underestimated rate of spread
and fire perimeter, Fujioka, 2002; Butler et al., 2005) to moderate (Cohen’s Kappa of
0.61e0.82, Arca et al., 2007). Inaccuracies result from limitations of the model,
especially in the way it simulates spotting, which has a large effect on the spread of
severe wildfires, and the difficulty of obtaining reliable inputs for the model, such as
fuels (Mutlu et al., 2008), and wind data (Arca et al., 2007). Yet, although FARSITE is
imperfect, it is the most reliable of the currently available fire simulation models,
and is widely accepted among fire managers in the United States, as well as in other
countries (e.g., Brazil (Mistry and Berardi, 2005), Spain (Duguy et al., 2007), and
Israel (Carmel et al., 2009)).

2.4. Fire simulations

To account for variability in ignition locations, we applied a multiple simulation
approach, similar to Carmel et al. (2009) and Bar Massada et al. (2009) in which
a large number of fires were simulated. We used two scenarios of ignition locations
(random and empirical) and two weather scenarios (normal and extreme). Six
thousand individual FARSITE simulations were conducted for each ignition/weather
scenario, with a single ignition point per simulation, to set an average ignition
density of roughly one ignition per 10 ha. Overall, we conducted 24,000 simulations
(6000 � 2 ignition location models � 2 weather scenarios). The large number of
FARSITE simulations was carried out by automating the graphical user interface of
FARSITE using HP QuickTest professional, a functional software testing program.

We conducted FARSITE simulations under two weather scenarios: normal fire
season weather and extreme weather. Weather data was based on actual, hourly
weather streams measured by the Malibu Hills Remote Automated Weather Station
(RAWS) in the center of the study area. The extreme scenario was based on the
weather during the 2007 Corral fire, which burned 1983 ha between November 24th
and 27th (Fig. 3). The fire started from a campfire in the hilly area of Malibu Creek
State Park, under conditions of very low relative humidity (w10%) high-wind speeds
(gusts up to 100 km/h), and an average daily temperature of 18.7 �C. The weather
stream used for the simulations corresponded with the first 13 h of Corral fire
starting at 3:00 AM.

For the normal fire weather we selected data from a week before the Corral fire,
on a day that was characterized by moderate relative humidity, low wind speeds
(Fig. 3) and an average daily temperature of 14.5 �C. Again, fire duration was 13 h,
and the fire started at 3:00 AM, matching the actual timing of the Corral fire. Fire
durations were held constant across all simulations in order to improve compara-
bility among scenarios by eliminating the effect of fire duration on fire size. In each
simulation, weather condition streams (13 hourly weather parameters) were held
constant regardless of ignition location. This modelling assumption may lead to an
underestimate of the extent of fires burning under extreme weather conditions, as
they tend to last longer than fires burning at regular weather conditions. To solve
that, we would have needed to account for the natural variability of fire durations,
and this would have required us to significantly increase the number of simulations.
Due to technical limitations, increasing the number of simulations was impossible.

The conditioning period for fuel moisture was one week before the ignition date
(November 10th for normal and November 17th for the extremeweather scenarios),
based on the actual weather data. Spot fires were allowed to start with a 5% ignition
probability. Live fuel moisture was set to 70%, which corresponds to the occurrence
of most large wildfires in the study area (Dennison et al., 2008).

The spatial data required for running FARSITE was obtained from the LANDFIRE
project (Rollins and Frame, 2006) at 30-m resolution. We used the 40-category fuel
modelmapof Scott andBurgan (2005) inorder to increase spatial detail. However, the
representation of roads is incomplete in the LANDFIRE fuelmaps, and this can bias the
results offire simulations by introducingbreaches in roads thatotherwisewouldhave
served as surface fuel breaks (BarMassada et al., 2009).We corrected roads using the
US Census Bureau TIGERLINE road data (available from the Environmental Systems
Research Institute website: http://www.esri.com/data/download/census2000_
tigerline/index.html). The vector road data was rasterized at 30-m resolution and
combined with the fuel map, and the road pixels were reclassified as the urban fuel
type (Scott and Burgan code NB1). In FARSITE, this fuel type blocks the spread of
surface fire, but does not block fires that spread through spotting, which is important
for this study area because many fires jump across roads under extreme weather
conditions (Halsey, 2008).

At the end of each simulation, the burned area of each fire was calculated. For
each scenario, we overlaid the maps of the 6000 resulting fires and summed them
for each pixel. This resulted in a “number of burns” map, where the number in each
pixel corresponded to the number of times this pixel experienced a fire. Dividing this
map by the number of fires (6000) yielded a burn probability map, depicting the
probability of each pixel to burn under a given ignition location model and weather
scenario.

2.5. Statistical analysis

For each scenario, we calculated the size distribution of fires and the distribution
of burn probabilities. In addition, we calculated the non-parametric spatial correla-
tion between burn probability maps under the sameweather conditions but different
ignition location models. Using a Wilcoxon rank-sum test (Sokal and Rohlf, 2003),
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since fire sizes were not normally distributed, we also investigated whether fire size
distributions were significantly different between ignition location models.

We calculated the differences in burn probability values under extremeweather
conditions by subtracting the random ignition burn probability map from the
empirical ignition burn probability map. We overlaid the empirical ignition points
on the difference map to assess whether the differences in burn probabilities were
related to ignition pattern and density.

3. Results

Fire sizes were an order of magnitude larger under extreme
conditions compared to normal conditions (Fig. 4). The average fire
sizes under extreme conditions were 230.1 ha and 344.5 ha for the
random and empirical ignition locations, respectively. In addition,
the empirical ignitions generated more large fires than the random
ignitions under extreme weather conditions. Under normal
conditions, mean fire sizes were and 17.5 ha and 13.3 ha for the
random and empirical ignitions, respectively. The fire size distri-
butions were significantly different between ignition location
models for each weather scenario (Wilcoxon rank-sum test,
p < 0.001) in both cases, although the magnitude of the difference
was greatest under extreme weather conditions.

The burn probability maps varied by weather scenario and by
ignition location model. As expected, the extreme weather simu-
lations exhibited higher burn probabilities than the normal
weather simulations (Fig. 5). The highest average burn probability
was obtained for the empirical ignitions under extreme conditions
Fig. 4. Fire size distributions under normal (a) and extreme (b) weather conditions for
random ignitions (black bars) and non-random ignitions (gray bars). Notice the
difference in the scale of the x-axis.
(mean burn probability of 0.26%), followed by the random/extreme
scenario (0.17%), the random/normal scenario (0.013%), and finally
the empirical/normal scenario (0.01%). In other words, weather
conditions and ignition locations interacted in ways that signifi-
cantly changed the outcomes. Ignitions location models produced
opposite effects on burn probabilities under extreme weather
compared to normal weather.

Comparing outcomes associated with the two ignition location
models, the correlation between burn probability maps was lower
for the normal weather conditions (Spearman’s r¼ 0.54), compared
to the extreme weather conditions (r ¼ 0.83). Under extreme
weather conditions, hotspots of fire activity generally occurred in
the same areas, though there was pronounced fine scale variation
in burn probabilities (Fig. 6). Under normal weather conditions,
spatial differences were more pronounced, probably because fires
were much smaller (Fig. 7).

The burn probability difference map for the extreme weather
scenario (Fig. 8) revealed that in most cases, variations in burn
probabilities were caused by differences in ignition densities. Areas
in which the burn probability map of random ignitions had higher
values than the burn probability map of empirical ignitions
(negative values in Fig. 8) were areas with low empirical ignition
densities (while random ignition densities were almost constant).
The opposite trend occurred in areas that had a large number of
empirical ignitions (positive values in Fig. 8). However, this pattern
was not solely related to ignition density, as there were also areas
that had low empirical ignition densities (compared to random
ignition densities), but similar burn probabilities for both ignition
location models.

4. Discussion

We used a multiple simulation approach to assess the effects of
ignition locations on modeled fire spread in an actual landscape.
Our results show that choice of ignition locations can have a strong
impact on the outcomes of spatially explicit fire simulation models.
While there were distinct differences between the empirical and
randommodels of ignition locations in our study, the exact effect of
ignition location models on simulated burn patterns may vary from
region to region, depending on the complex interactions among
ignition locations, the spatial configuration of fuels and topography,
and weather conditions (Parisien et al., 2010). Nevertheless, our
results suggest that the use of random ignition location models for
fire simulation studies may result in erroneous conclusions due to
the difference in the spatial patterns of burn probability. The use of
empirical ignition locations for fire simulations, introduced here as
an alternative to random ignition locations, offers a practical tool for
exploring these complex interactions, and to quantify burn proba-
bilities with higher accuracy. The increasing quality and availability
of ignition location data makes it possible to use empirically based
ignition location predictions in future studies, and this research
suggests the value it adds to simulation-based fire research.

We expected that a random ignition location model would
generate larger fire sizes and higher burn probabilities, since any
location in the landscape has the same probability of ignition, and
therefore anyarea in the landscapehas a chance toburn (compared to
the empirical ignition location model, which predicts higher proba-
bilities for ignitions to occur near human development, thus
decreasing the ignition probabilities of remote areas that have
continuous fuels, which in turn can support larger fires). We also
expected the variability of fire size distribution to be higher for
random ignition locations. In contrast,weexpected that the empirical
ignition locationmodelwould limit the chances of someareas toburn
because these areas would have fewer ignition points. Moreover,
because the empirical ignition location model gives higher ignition



Fig. 5. Distributions of burn probability for random (a, b) and empirical (c, d) ignition location models under normal (a, c) and extreme (b, d) weather conditions.
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probabilities to areas where there is more human activity, we
expected these areas to experience smaller fires because theymay be
characterized by discontinuous fuels and greater extent of non-
burnableareas.Althoughwedidnotmodel suppression,moreheavily
populated areas may also be coupled with more intense suppression
efforts and enhanced accessibility for suppression forces. This led us
toexpect that, regardless ofweather conditions, the randomlocations
model would produce larger fires. The simulation results, however,
painted a more complex picture.

Under normal weather conditions, our expectations proved to
be correct, and the random ignition location model yielded
Fig. 6. Burn probability maps for random ignitions (a) and em
significantly larger fires and higher burn probabilities, but the
differences in the mean area compared to empirical ignition
locations was only 4 ha, which is relatively small. Under normal
weather conditions, fires were less likely to produce long-distance
embers and fire brands, thus fuel discontinuity (abundant in high
ignition probability areas in the non-random ignition location
model) limited fire spread. In contrast, under extreme weather
conditions, the opposite trend occurred and empirical ignition
locations yielded larger fires and higher burn probabilities. Under
these conditions, fuel discontinuity played a smaller role since
significant amounts of long distance spotting occurred. Yet, the
pirical ignitions (b) under extreme weather conditions.



Fig. 7. Burn probability maps for random ignitions (a) and empirical ignitions (b) under normal weather conditions.
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question still is: why do non-random ignition locations produce
larger fires than random ignition locations? The answer may be
related to the specific properties of the study area and the
empirical ignition location model. The results of Syphard et al.
(2008), who developed the empirical model, show a positive
spatial correlation between ignition locations and potential for fire
spread areas in the Santa Monica Mountains. This means that,
historically most fires tended to start under extreme weather
conditions in places that promoted extensive fire spread, while
other parts of the landscape, better captured by the random
ignition location models, promote relatively smaller extreme-
weather fires but larger normal-weather fires. This may also be
related to the direction of Santa Ana winds. The Santa Monica
Mountains are an east-west trending range, and the canyons
parallel Santa Ana wind directions. Therefore, large fires may be
spatially constrained to wind corridors under severe weather,
which may not be the case under other conditions. In addition,
there was an inherent limitation to the usage of the modeled
Fig. 8. Differences in burn probabilities between the empirical and random ignitions burn p
yielded higher burn probabilities, while negative values (dark colors) depict areas where rand
appear as black dots and roads are depicted by black lines.
ignition locations in this study, since the model did not allow us to
account for spatial variations in ignition locations due to weather
conditions. Ignition locations may be affected by weather condi-
tions (since the ignition locations model was based on actual fires,
that happened under specific weather conditions), but the model
that we used did not account for that, and we therefore had to
assume that ignition locations were the same under both normal
and extreme weather conditions. Another modelling assumption
was that all ignition locations (empirical or random) could support
large fires. Yet, the empirical ignition location model did not
account for fire size. Thus, it is possible that small fires and large
fires have different spatial patterns of ignitions. In the U.S., fires
that start near human settlements are detected earlier compared
to backcountry fires (prompting faster suppression) and often
occur in areas of discontinuous fuels which hamper their spread
and make suppression more effective. Backcountry fires are
detected later, and are harder to suppress due to fuel continuity
and lack of accessibility. Therefore, backcountry ignitions, which
robability maps. Positive values (bright colors) depict areas where empirical ignitions
om ignitions generated higher burn probability values. The empirical ignition locations
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have a different spatial pattern compared to wildland urban
interface ignitions, often yield larger fires.

The use of twoweather scenarios, normal and extreme, without
accounting for the full variability of weather conditions, was
a simplified representation of the full range of fire behaviors.
Furthermore, normal conditions are rarely considered in fire risk
assessments, since practically all large fires are an outcome of
extreme weather conditions (assuming that large-scale thresholds
of fire drivers are met, e.g., Slocum et al., 2010). Technical limita-
tions prevented us from exploring a wider range of weather
conditions, especially in the extreme end (since simulations of very
large fires required a prohibitively long computer processing time).
Therefore, we view our results as a conservative estimate of the
effects of weather on the interactions between ignition locations
and the spatial pattern of fires. More extreme weather conditions
could promote even larger fires, and that would further emphasize
our conclusion that under extreme conditions, the effect of ignition
locations diminishes. We also suggest that this general conclusion
holds true in other regions as well, especially in areas where
human development is low, topography is relatively homogeneous,
and fuels are continuous (e.g., the boreal forest).

The high spatial correlation between the extreme weather burn
probability maps for the two ignition location models suggested
that, at least in this study area, using a random ignition location
model produced acceptable results if one is interested in the
general spatial patterns of fire under extreme weather only. Under
normal weather, differences are more pronounced, and a random
ignition location model should not be used for spatially explicit
predictions of burn probability. For any fire risk assessment that is
based on multiple simulations, it is desirable to use a custom non-
random ignition location model that is based on the fire history of
the area, simply because the differences between random and non-
random ignition location models cannot be predicted in advance.
However, in regions where fire history is scarce, it may not be
possible to produce a custom ignition location model, and even
worse, empirical ignition location models may be biased due to
limited training data. In these cases, we recommend that spatially
explicit analyses of fire risk be based on extreme weather condi-
tions, since these conditions may be able to limit the impacts of an
inaccurate ignition location model. Nevertheless, this approach
would have obvious drawbacks if the objective of the study were to
explore fire patterns under non-extreme weather conditions.

Another possible tactic would be to assess the deviation of
anthropogenic landscape features (especially roads, as they are
often influential predictors of fire ignitions) from a uniform or
random pattern. In landscapes with a spatially uniform road
network, random ignition location models are likely to work better
than in landscapes with clustered roads. For example, road
networks in the upper Great Lakes states are quite often dense and
uniform due to the ease of building roads; while networks in
mountainous terrain leave larger areas distant from roads (Watts
et al., 2007). In places where the pattern of road networks and
anthropogenic development are uniform (and in the absence of
a good empirical ignition location model) the usage of a random
ignition location model may be justified.

Here and in other studies (BarMassada et al., 2009; Carmel et al.,
2009), FARSITE has proven to be a valuable tool for exploring the
spatial components of fire behavior. We assessed the effects of
ignition locations with FARSITE since it belongs to a widely used
family of fire models (e.g., FsPro, BEHAVE) that are based on
Rothermel’s fire spread equations (Rothermel, 1972). We assume
that similar results could be obtained from any other model that is
based on the same equations.

The results of our analysis may be different in modelling
frameworks that do not employ the same mechanisms and
approximations contained in FARSITE. FARSITE characteristics that
may affect the results of our analysis are the simplified spot fire
module (since spotting can alter the spatial pattern of a fire,
especially under extreme weather conditions) and the constant
wind direction (since local wind direction has a significant effect on
fire spread) (Lopes, 2003; Sharples et al., 2010). Furthermore, the
usage of FARSITE requires a large amount of spatial data about fuels
and topography, in addition to temporal weather data. We used the
freely available LANDFIRE spatial data (Rollins and Frame, 2006),
and this dataset performed overall very well in our study. However,
there are several issues regarding the thematic accuracy (Krasnow
et al., 2009) and theway LANDFIRE represents roads thatmay act as
fuel breaks (Bar Massada et al., 2009). Since the main objective of
our research was to compare ignition location models (and not to
conduct an actual risk assessment for the Santa Monica Moun-
tains), we used LANDFIRE data because of its availability and
despite its limitations. Similarly, we used climate data from a single
weather station, although the topographical variability of the study
area, coupled with its size, implies that there is also a pronounced
spatial variability of weather conditions that cannot be adequately
described by a single weather station. It is therefore possible that
our results are somewhat biased due to unrepresentative weather
conditions, especially wind speed and direction that are expected
to vary in a complex terrain like the study area, and are also two of
the most influential determinants of fire spread. However, for
a practical fire risk assessment study that is based on the multiple
simulations approach, it is crucial to use the best available fuels and
climate data, since FARSITE tends to produce low-accuracy results
when inaccurate fuels (Mutlu et al., 2008) and constant wind
vectors (Arca et al. 2007) are used in the course of the simulations.

In summary, the results of our research highlight the importance
of selecting an adequate ignition location model for spatially
explicitfire simulations. Given the advances in ignitionmodelling, it
is desirable that future studies will be based on empirical models of
ignition locations, mainly in areas where there is sufficient histor-
ical fire data. In areas lacking such data, studies would still need to
rely on crude assumption about ignition locations, or even random
ignitions. The type of empirical ignition model that we used in our
study is straightforward to repeat, since we employed standard
multiple-regression modelling methods. However, because fire
regimes and ignition sources (i.e., human versus lightning) vary
substantially from region to region, it would be important for
anyone developing an ignition model to carefully consider which
explanatory variables are appropriate for their region of interest.
Indeed, the primary differences in the models presented in Table 1
were in the number and importance of explanatory variables. An
encouraging implication of our results is that, in studies that
simulate fires under extreme weather conditions (often in risk
assessments), the bias introduced by using random instead of
empirical ignition locations is somewhat reduced.
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