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Urbanization causes the simplification of natural habitats, resulting in

animal communities dominated by exotic species with few top predators.

In recent years, however, many predators such as hawks, and in the US

coyotes and cougars, have become increasingly common in urban environ-

ments. Hawks in the Accipiter genus, especially, are recovering from

widespread population declines and are increasingly common in urbanizing

landscapes. Our goal was to identify factors that determine the occupancy,

colonization and persistence of Accipiter hawks in a major metropolitan

area. Through a novel combination of citizen science and advanced

remote sensing, we quantified how urban features facilitate the dynamics

and long-term establishment of Accipiter hawks. Based on data from Project

FeederWatch, we quantified 21 years (1996–2016) of changes in the spatio-

temporal dynamics of Accipiter hawks in Chicago, IL, USA. Using a

multi-season occupancy model, we estimated Cooper’s (Accipiter cooperii)
and sharp-shinned (A. striatus) hawk occupancy dynamics as a function of

tree canopy cover, impervious surface cover and prey availability. In the

late 1990s, hawks occupied 26% of sites around Chicago, but after two dec-

ades, their occupancy fluctuated close to 67% of sites and they colonized

increasingly urbanized areas. Once established, hawks persisted in areas

with high levels of impervious surfaces as long as those areas supported

high abundances of prey birds. Urban areas represent increasingly habitable

environments for recovering predators, and understanding the precise urban

features that drive colonization and persistence is important for wildlife

conservation in an urbanizing world.
1. Introduction
Close to 4 billion people live in urban areas, and that number will grow to 6.5

billion by 2070 [1,2]. Urbanization is the most irreversible of anthropogenic dis-

turbances [3,4], and as cities expand across the planet, urban ecosystems are

becoming an increasingly important environmental setting for shaping ecologi-

cal processes [5–7]. Although urbanization fundamentally alters biodiversity,

urban and peri-urban areas offer novel habitats and food resources for a

number of species dependent on characteristics of the urban environment [7].

For example, cities with more green spaces [8,9] or cities close to more intact,

natural areas [10,11] generally support a higher abundance and diversity of

plants and animals.

In recent decades, many predators recovering from low population sizes

due to years of persecution [12] and depressed reproduction due to biomagni-

fication of pesticides in food chains [13] are repatriating natural landscapes and

colonizing urban environments. Residential yards and city parks provide suit-

able habitat for recovering predators such as coyotes (Canis latrans) [14], cougars

(Puma concolor) [15] and merlins (Falco columbarius) [16]. Many of these
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Figure 1. Pattern of hawk occupancy (the proportion of sites at which an Accipiter hawk was present during one or more sampling periods) during 1996 – 2016 in
six cities across the United States. Yearly occupancy was calculated using raw Project FeederWatch counts.
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predators not only use urban environments [17] but reach

high densities and successfully reproduce [18–22]. For

example, peregrine falcons (Falco peregrinus) were historically

rare in eastern North America [23] and thought to be extir-

pated in the mid-1960s [24,25], but after successful captive

breeding and reintroduction, they have become common in

cities, taking advantage of artificial nesting sites (e.g.

window ledges and suspension bridges) and ample prey [26].

Urbanization creates a complex mosaic of impervious sur-

faces (ground covered by impermeable surfaces such as

buildings and roads) interspersed with green spaces (the

inverse of imperviousness) of natural and semi-natural habitats

[27,28]. Green spaces encompass a diversity of urban open

spaces such as city parks, golf courses, cemeteries and

abandoned lots [9]. This diversity of both natural and human-

modified land cover probably plays a role in how and where

predators establish within the urban landscape [29]. For

example, in Chicago, IL, USA, mesocarnivores were more

likely to colonize and persist in green spaces with higher tree

canopy cover and lower housing density than more developed

areas [11]. Likewise, the recent colonization of northern

goshawks (Accipiter gentilis L.) into Hamburg, Germany was

facilitated by afforestation and forest maturation [30]. Thus,

despite the presence of built structures and high human den-

sity, it is evident that green spaces within cities represent

available habitat for recovering predator populations.

In addition to green spaces, urban areas offer food

resources that can be highly concentrated and predictable in

time and space [31,32], and predators that exploit such

resources are rewarded with ample prey [33–36]. For

example, after the recovery from a rabies outbreak that
swept through central Europe in the late 1960s, red foxes

(Vulpes vulpes) shifted to breeding in developed areas and

took advantage of anthropogenic food resources, which

allowed them to persist in urban environments [34]. Simi-

larly, in Maharashtra, India, leopards (Panthera pardus)

persist in urban settings due to the high density of domestic

animals that comprise 87% of their diet [37]. Millions of

households in cities throughout the world feed wild birds

and sustain their populations at elevated densities [38]. This

hyperabundance of prey, supported by supplementary feed-

ing, provides an important and predictable food resource for

avian predators, such as Cooper’s (Accipiter cooperii) and

sharp-shinned (A. striatus) hawks that are often attracted to

the high levels of bird activity at feeders [39]. Raptors persist-

ing in urban environments that feed primarily on bird species

(as opposed to small mammals) have relatively high breed-

ing performance, suggesting that prey availability is an

important factor in determining their success [40].

In the mid-twentieth century, Accipiter hawks mirrored

the widespread declines of other recovering predators, but

their populations are rebounding to the point where they

are now increasingly common in urban environments [41].

The increase of hawk populations in cities is a widespread

phenomenon across the USA (figure 1), and yet dynamics

and mechanisms underlying the colonization and use of

these urban landscapes remains unclear [42]. Furthermore,

Accipiter hawks are emblematic of the broader suite of reco-

vering and highly adaptable predators colonizing urban

environments. They are wide-ranging predators that inhabit

a variety of woodland areas and prey on a diversity of bird

species [43–45]. Both hawk species share many of the same
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Figure 2. Map depicting the urban study area of Chicago, IL. Black dots represent Project FeederWatch sites from 1996 to 2016. Percentage imperviousness is shown
in pink (low) to purple (high) and percentage tree canopy cover is displayed in green (darker green indicates higher percentage tree canopy cover).
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habitat and prey preferences, but whereas Cooper’s hawks

are primarily year-round residents in the eastern USA [46],

the distribution of sharp-shinned hawks is a mix of winter

and year-round residence [43]. Accipiter species are typically

‘perch-and-scan’ hunters that take mostly medium- to large-

bodied avian prey [42–44,47], and in urban areas, they

have a propensity to forage at bird feeders. Given their ability

to prey on a diversity of species and acclimate to different

habitats, Accipiter hawks are exemplary species with which to

examine the factors facilitating the colonization and persistence

of recovering predators in an urban environment.

Herein, we explore which spatio-temporal features of the

urban environment facilitate the colonization and persistence

of wintering Accipiter hawks in Chicago. Although previous

research has suggested that green spaces and prey resources

are important constraints on predators occurring in urban

areas [29,30], few studies have explicitly tested the dynamic

role of these limitations on predator establishment. We hypoth-

esized that the distribution of tree cover, imperviousness and

prey availability would greatly influence long-term trends

and patterns of establishment (colonization and persistence)

of Accipiter hawks in a major metropolitan area. Specifically,

we predicted that areas with higher tree canopy cover would

facilitate hawk colonization (i.e. initial arrival) for these wood-

land predators whereas colonization would be impeded by

high amounts of imperviousness. However, their persistence

(i.e. ongoing use) of urban areas would require high prey abun-

dance and availability of their preferred prey, with the

expectation that higher numbers of backyard birds would

promote their persistence in this novel environment.
2. Material and methods
(a) Study area
We studied the winter establishment dynamics of Accipiter
hawks in Chicago, IL, USA (figure 2), which was well sampled
by our citizen science programme (see Project FeederWatch sec-

tion). The Chicago metropolitan area is expansive and has a

gradient from high- to low-density development in which to

investigate the effects of the urban environment on hawk estab-

lishment. Winters in Chicago are typically cold and variable

[48], with daily temperatures ranging from –10.8 to 229.18C
[49]. Chicago has a diversity of green spaces, but only 14% of

the city features tree cover. We delineated our study region

using the 2016 Census Bureau’s TIGER/Line urban areas shape-

file [50] (figure 2). Within this dataset, urban areas were

represented by densely developed areas encompassing residen-

tial, commercial and other non-residential uses supporting

more than 50 000 people [50].
(b) Project FeederWatch
Observations of Accipiter hawks and prey species came from Pro-

ject FeederWatch, a citizen science programme operated by the

Cornell Lab of Ornithology and Bird Studies Canada (www.fee-

derwatch.org). The program is designed to study changes in the

distribution and abundance of birds in winter across North

America. Wells et al. [51] reported complete details of the proto-

col. We chose this winter-based survey because of its many

advantages over other broad-scale programmes such as atlases

or the North American Breeding Bird Survey. First, repeated

counts are collected at fixed locations, second, counts are

dynamic, third, survey effort is recorded, and lastly, the pro-

gramme adequately samples the urban environment. From

early November to late April, programme participants recorded

the maximum number of each species seen at their supplemental

feeding stations (hereafter sites) during a 2-day count and the

number of hours (less than 1, 1–4, 4–8, greater than 8) they

spent observing their feeder. Participants reported the geo-

graphical location of their feeders using online mapping tools,

geographical positioning systems or address information. We

excluded any sites where the location information was missing

or imprecise. To further reduce potential location error, we also

combined feeders that were within 25 m of each other. Counts

were repeated throughout the season and separated by a mini-

mum of five days, totalling 22 weeks. We used data collected

http://www.feederwatch.org
http://www.feederwatch.org
http://rspb.royalsocietypublishing.org/


rspb.royalsocietypublishing.org

4

 on November 8, 2018http://rspb.royalsocietypublishing.org/Downloaded from 
during the winter seasons (k ¼ 1996, . . . , 2016), from all feeder

sites (i ¼ 1, . . . , M ) within the study region, for a total of 554

sites. To decrease the inclusion of migrating hawks in our

sample, we selected only observations recorded during Decem-

ber through February, resulting in 13 weeks of replicate

surveys ( j ¼ 1, . . . , J ). Sharp-shinned and Cooper’s hawks are

difficult to differentiate due to their similar size and plumage.

Therefore, we combined observations of both species

(sharp-shinned ¼ 1082, Cooper’s ¼ 4220). We collapsed count

observations to identify a site as occupied (yi,j,k ¼ 1) for site i,
survey j, year k, if hawk abundance was greater than 0, and as

unoccupied (yi,j,k ¼ 0) if no hawks were observed.
:

Proc.R.Soc.B
285:20182120
(c) Defining urban features
Our model of hawk establishment dynamics included measures

of tree canopy cover, imperviousness, prey availability, annual

and weekly temperatures and sampling effort at each Feeder-

Watch site. Minimum winter temperatures were included to

control for variation in temperature across years as cold winters

could facilitate hawk colonization [30]. Temperatures during the

week of the survey and participant effort were expected to

impact detection of hawks at the feeders [35,45,52].

We considered impervious surface as the inverse of green

space and calculated annual imperviousness and tree canopy

cover only. We assessed annual imperviousness and tree

canopy cover for Chicago using LandSat data. First, we

downloaded all available LandSat TM/ETMþ/OLI surface

reflectance in L1T format covering Chicago (Landsat path/row

023/031). We then masked out cloud, snow and shadow using

LandSat QA band, and calculated the mean for each reflectance

band for each year [53]. To reduce uncertainties, we included

+1-year imagery around the target years. Next, we obtained

ground reference data using a 1 m resolution land cover map

provided by Chicago Metropolitan Agency for Planning

(CMAP) [54] and calculated per-pixel percentage of impervious

surface and tree canopy cover at the Landsat scale to generate

a set of temporally consistent training samples [55]. Using a

random forest regression tree, we quantified imperviousness

and tree canopy cover for each pixel annually from 1996 to

2016. We then averaged annual 30 m imperviousness and tree

canopy cover layers to create a time series for each variable at

a spatial unit size of 3 km2 (300 hectares). The landscape size

approximated the winter home range size of Cooper’s hawks

[56]. We smoothed annual imperviousness (impi,k) and tree

canopy cover (treei,k) time series using a trajectory approach

[57]. See electronic supplemental material, figure S1 for accuracy

assessment of the layers.

Daily minimum temperatures (8C) were extracted from

the PRISM climate dataset, a gridded climate model with a

4 � 4 km resolution [58] for winters (December–February) of

1996–2016. Annual mean minimum temperatures (minTempk)

were aggregated across Chicago, while weekly mean mini-

mum temperatures (tmini,j,k) were extracted for each feeder

site. Participant effort (efforti,j,k) was included as five categori-

cal levels (less than 1, 1–4, 4–8, greater than 8 h, NA), where

the fifth level included observations with missing effort.

We used two annual metrics of prey availability: (1) average

prey abundance (preyAbundi,k) calculated as the maximum

number of prey recorded each week then averaged across

survey weeks each year; and (2) average prey biomass

(preyMassi,k) calculated by weighting total prey abundance by

species-specific body masses (from: Sibley [59] and iBird [60]).

We tested for collinearity among predictors using Pearson’s

product correlations coefficient (r). Tree canopy cover and imper-

vious surface were negatively correlated across the years

(r ¼ 20.59 to 20.76). Only 30% of the years (1996–2000, 2009)

were higher than .+0.7, a commonly used threshold for
collinearity [61], however, the overall correlation coefficient was

20.66. Therefore, we included both landscape variables in the

global model. Other predictors were not highly correlated

(r ¼+,0.7).
(i) Hawk establishment model
We evaluated whether urban features influenced colonization

and persistence of Accipiter hawks during 1996 –2016 using a

dynamic occupancy model implemented within a Bayesian

framework [62]. Dynamic occupancy models have two main

components: (i) an observational sub-model accounting for

imperfect detection of hawk site visitation; and (ii) an ecologi-

cal sub-model estimating true site occupancy/establishment

dynamics as the product of two Markovian (i.e. autoregres-

sive) processes: site colonization and persistence [63].

Observed occupancy, gi,j,k, was the result of site i being

occupied in year k by a hawk, zi,k, and the probability of a

hawk being detected at a feeder, pi,j,k, in a given j replicate

survey week,

yi,j,kjzi,k � Bernoulli(zi,k � pi,j,k):

The probability of detecting a hawk was in turn related to

survey effort, efforti,j,k and temperature at the time of the

survey, tmini,j,k, through a logit-link function,

logit( pi,j,k) ¼ teffort[i,j,k] þ t1� tmini,j,k:

Effort was incorporated as categorical intercepts, which rep-

resent mean detection probabilities for each level of effort. Vague

priors were assumed for the hyperparameters: t1 � N(0,100) and

teffort ¼ log (m0=1� m0); m0 � U(0,1). True occupancy, zi,k, at site

i, year k, was in turn related in the ecological sub-model to the

probability of occupancy, ci,k. In the initial year (k ¼ 1996),

zi,1996 � Bernoulli(ci,1996),

with the probability of occupancy in turn having a Uniform

prior, ci,1996 � U(0,1). For the remaining years (k ¼ 1997–2016),

occupancy, zi,k, was conditional on occupancy in the previous

year,

zi,kjzi,k�1 � Bernoulli(ci,k):

The probability of occupancy, ci,k, in turn depended on the

probability that site i persisted as occupied, fi,k, given it was

occupied in the previous year k 2 1, or if it was unoccupied

(1 2 zi,k21), on the probability that it was colonized, gi,k [62]:

ci,k ¼ zi,k�1 � fi,k�1 þ (1� zi,k�1) � gi,k:

We related all urban features to the probabilities of colonization

and persistence using logit-link functions:

logitðgi,kÞ ¼ b0 þ b1� impi,k þb2� treei,k þb3 � minTempk

þb4 � preyMassi,k þb5 � preyAbundi,k þ 11,i þ12,k

and

logitðfi,kÞ ¼a0 þ a1 � impi,k þ a2 �treei,k þ a3� minTempk

þ a4 � preyMassi,k þ a5 �preyAbundi,k þ y1,i þ y2,k

Predictors were standardized by dividing their means by one

standard deviation to aid convergence and comparison among

coefficients [64]. Intercepts were modelled as mean effects,

b0 ¼ log (m1=1� m1); m1 � U(0,1), and a0 ¼ log (m2=1� m2);

m2 � U(0, 1). The n ¼ 1, . . . , 5 coefficients were given normal

priors bn � N(0, 100), an � N(0, 100). The repeated-measures

design was accounted for using random site ID and year

effects: 11,i � N(0, s2
1) and 12,k � N(0, s2

2) with s1 � U(0, 5),

s2 � U(0, 5), y1 � U(0, 5) and y2 � U(0, 5). Missing values

http://rspb.royalsocietypublishing.org/
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were introduced in the measures of prey availability due to the

variation in participant retention over the duration of the

study. Missing values were estimated by sharing information

from the observed values by assigning them common priors

[65]. The priors assumed that each prey measure had a Normal

distribution with mean and variance values that were common

among site and years: preyMassi,k � Nðz1, t2
1) and preyAbun

di,k � Nðz2, t2
2). The associated standard deviations were given

vague priors: t2
1,t2

2 � U(0,5).

Posterior distributions of the model parameters were esti-

mated using Markov chain Monte Carlo (MCMC) methods

available in program JAGs [66], which we called from R [67]

with jagsUI [68]. We ran three parallel chains of 120 000 iter-

ations each, with a thinning rate of 30 and 15 000 burn-in.

We tested a range of priors for both alpha and beta par-

ameters (results not shown) as an informal regularization

approach and found little variation in the estimates. There-

fore, we use 95% credible intervals to assess significant

parameters. Model convergence was determined visually

using the MCMC trace plots and by ensuring the Gelman–

Rubin statistic was less than 1.1 [69]. We used parameter

estimates to predict and map the establishment dynamics of

hawks at a 3 km grid-cell resolution for other parts of the

city that were not sampled. Since we estimated our prey

availability metrics at the site level, we held them at the

year-specific mean when making spatial predictions. To

evaluate whether overlapping landscapes (territory buffers)

violates the assumption of independence of residual errors

we assessed spatial autocorrelation of model residuals using

a Moran’s I test separately for each year to account for the
different number of sites among years (m ¼ 108.6, s.d. ¼

29.2, min ¼ 42, max ¼ 141 sites per year). We found no evi-

dence of spatial autocorrelation ( p . 0.05) in either

colonization or persistence model residuals.
3. Results
The probability of Accipiter hawk occupancy exhibited a

growth phase between 1996 and 2009, increasing from 26%

(95% CI ¼ 14–40%) to 74% (95% CI ¼ 67–81%). After 2009,

occupancy stabilized around 67% (figure 3). The probability

of hawk occupancy was greatest at the periphery of the city

and lowest in the city centre (figure 3). During the study, the

probability of colonization increased from 38% (22–51%) to a

high of 58% (95% CI ¼ 45–71%) in 2007 (figure 3). Similarly,

persistence was high during this time, ranging from 53%

(95% CI ¼ 41–65%) in 2001 to a high of 82% (95% CI ¼

74–90%) in 2009 (figure 3). As occupancy stabilized, coloni-

zation and persistence also levelled off at 47% and 75%,

respectively (figure 3). Colonization was highest outside

the city centre, and this pattern remained relatively constant

over time, but persistence was more widespread in the later

years (figure 3). Detection probability was negatively, but

only marginally significantly (CI overlapped 0 by less than

or equal to 0.05), related to minimum weekly temperature,

indicating hawks were more likely to be detected at feeders

during periods of colder temperatures (table 1). As expected,

http://rspb.royalsocietypublishing.org/


Table 1. Coefficient means and 95% credible intervals (CIs) for the model evaluating the effects of landscape, temperature and prey availability (excluding
intercepts) on Accipiter hawk colonization and persistence in Chicago, IL, USA (1996 – 2016). Colonization was significantly negatively associated with
imperviousness and tree canopy cover and positively associated with related to average prey abundance. Persistence was driven primarily by average prey
abundance.

coefficient parameter mean 2.5% CI 97.5% CI

detection parameters

t1 minimum temperature 20.04 20.08 0.01

colonization parameters

b1 imperviousness 21.16 21.71 20.69

b2 tree canopy cover 20.52 21.03 20.05

b3 minimum temperature 20.02 20.46 0.42

b4 prey biomass 0.19 20.20 0.54

b5 average prey 1.41 0.79 2.13

s2
1 error for random year effect 0.66 0.24 1.20

s2
2 error for random site effect 1.19 0.69 1.94

persistence parameters

a1 imperviousness 0.09 20.40 0.57

a2 tree canopy cover 0.30 20.11 0.74

a3 minimum temperature 20.15 20.82 0.48

a4 prey biomass 0.25 20.14 0.69

a5 average prey 3.66 2.60 4.96

s2
3 error for random year effect 1.39 0.91 1.95

s2
4 error for random site effect 1.20 0.64 1.88
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Figure 4. Estimated probability of colonization and/or persistence of Accipiter hawks in Chicago as a function of (a) imperviousness, (b) prey abundance and (c) tree
canopy cover. As levels of imperviousness and tree canopy cover increased, the probability of colonization decreased significantly. Prey abundance was a strong driver
of both hawk colonization and persistence.
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the low effort resulted in low detection probability (electronic

supplementary material, table S1).

Urban development expanded throughout the Chicago

area during the time of our study, but most of the increase

in imperviousness occurred along the periphery of Chicago

with the development of low-density peri-urban commu-

nities. The increase in imperviousness occurred before 2008

and there was little change in recent years (electronic sup-

plementary material, figure S2). This stabilization in

urbanization coincided with the leveling off in the occupancy

rates of hawks (figure 3). During the same time, tree canopy

cover increased in Chicago, mainly due to tree growth in peri-

urban housing communities. However, throughout the whole
of Chicago, we found minimal increases in imperviousness

(25.9–29.8%) and tree canopy cover (21.5–29.2%) over the

duration of the study.

Both tree canopy cover and imperviousness influenced

the colonization of Accipiter hawks. Hawks were less likely

to colonize sites with the more impervious surface (table 1)

and generally did not colonize sites with over 50% imper-

vious surface (figures 4 and 5). Surprisingly, hawks were

more likely to colonize landscapes with lower amounts of

tree cover, but this effect was less important than impervious-

ness (table 1; figure 4). Average prey abundance, but not prey

biomass, significantly influenced the probability of hawk

colonization and persistence, and hawks were more likely

http://rspb.royalsocietypublishing.org/
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to colonize and persist in sites with a higher abundance of

feeder birds, regardless of mass (table 1 and figure 4). The

effect of prey abundance was much stronger for persistence

than it was for colonization (table 1). The probability of per-

sistence increased at a higher rate with prey abundance than

colonization, suggesting that hawks persisted at sites with

fewer prey than what they needed to colonize (figure 4).

Minimum yearly temperature had no effect on colonization

or persistence (table 1).
4. Discussion
Through a novel combination of citizen science and advanced

remote sensing, we quantified the importance of urban fea-

tures in facilitating the dynamics and long-term

establishment of Accipiter hawks in a major metropolitan

area. We found that urban features played an important role

in the colonization and persistence of Accipiter hawks in Chi-

cago. Hawks initially colonized along the outskirts of the city

and were less likely to colonize areas of high imperviousness,

avoiding heavily developed areas and landscapes with high

tree cover while favouring sites with greater prey abundance

(figures 3 and 5). Once hawks colonized a landscape, however,

their persistence was dependent only on prey abundance.
During the early years of colonization, Accipiter hawks

avoided sites with high imperviousness (less green space).

This spatial patterning of occupancy demonstrated a clear

avoidance of Chicago city centre and greater sustained rates

of colonization around the periphery of the city (figures 3

and 5), similar to the spatial patterns of goshawk colonization

in Hamburg, Germany [30]. Over time, hawks spread into

highly urbanized areas and persisted across a range of urban-

ization (imperviousness 0–80%). Imperviousness not only

reflects the amount of ground covered by impermeable sur-

faces, but it represents increased human disturbances (e.g.

vehicular traffic, anthropogenic noise, domestic pets).

Although human disturbance is known to negatively affect

species living in natural [70] rural and urban environments

[14,71], our results suggest that the hawks may have been

more sensitive to these disturbances during the initial

phases of colonization.

Contrary to our predictions, colonization was negatively

associated with tree canopy cover; sites with less tree cover

showed higher levels of colonization (figure 4). This result

was unexpected because Accipiter hawks are generally con-

sidered to be forest-dependent species, at least during the

breeding season. Little is known about their wintering habitat

across their range [44], but wintering Cooper’s hawks in Indi-

ana preferred residential and grassy areas and used forested

http://rspb.royalsocietypublishing.org/
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habitat less often than expected [72]. Perhaps the reduced

dependence on trees is not surprising given that hawks are

not nesting in winter, and their primary concern is survival.

Food and their preferred prey species may be more readily

available in residential areas where humans are providing

subsidies for wild birds [47,72,73].

Prey availability can have lasting effects on demographic

rates for predators [74–76] and seems especially important

for predators colonizing urban environments [29,30,77]. We

predicted hawks would preferentially seek out and colonize

areas with high average prey abundance and biomass.

Indeed, hawks colonized areas with high average prey abun-

dance (figure 4), but prey biomass was not important

suggesting that hawks were not selectively seeking out sites

with larger-bodied prey. The lack of a relationship between

prey biomass and establishment dynamics could be related

to the differences in prey preferences between Cooper’s and

sharp-shinned hawks, which could not be analysed separ-

ately in our study. However, the abundance of potential

prey is an important component affecting hawk colonization

and persistence in Chicago as well as in other urban

[30,73,78] and natural environments [79].

Predation is one of the primary forces shaping the species

composition of many urban animal communities, as it is in

natural settings [31]. Consequently, recovering predator

species colonizing urban areas should have a profound

effect on their prey communities. For example, Bell et al.
[78] found that the recolonization of Eurasian sparrowhawks

(Accipiter nisus) in Britain was correlated with a subsequent

decline of house sparrow populations. The long-term associ-

ation of house sparrows with urban areas caused a release

from top-down regulation and a loss of selection favouring

anti-predator behaviour, making them vulnerable to the

more recent colonization of sparrowhawks [78]. In addition

to the house sparrow, the recolonization of urban areas by

sparrowhawks in Britain altered the abundance of many

common feeder species [80]. Because prey availability was

the main factor contributing to the occupancy of Accipiter
hawk species in Chicago, it is likely the movement of

hawks into the city has altered the prey community, as

seen with sparrowhawks in Europe, although this remains

to be tested. Many studies of urban-dwelling Accipiter
hawks in North America have revealed their diet contained

a large percentage of invasive bird species such as pigeon,

European starling (Sturnus vulgaris) and house sparrow

[22,47,81]. The potential for predators to reduce population

sizes of overabundant or invasive species may reduce their

competition pressure on native species for resources [29,36].

The USA is adding about 1 million acres of urban devel-

opment, the equivalent of Los Angeles, Houston and Phoenix

combined, each year [82]. As urbanization increases, there is a

pressing need for more comprehensive studies of how the

colonization of cities by predators is influenced by the

spatio-temporal complexities of urban features. Here, we

found that prey availability and patterns of imperviousness

(the inverse of urban green spaces) were critical factors in

Accipiter hawk establishment dynamics in a major metropoli-

tan area. While the factors important in the urban

establishment of predators will probably vary by city, deter-

mining the relative importance of various urban landscape

features provides insight into how recovering predators

adapt and colonize novel urban habitats. In addition, urban

establishment studies will be important in guiding the man-

agement and design of metropolitan environments to

facilitate species persistence in these human-modified

landscapes.
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