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jor data source for regional to global land cover maps. However, land cover
mapping of large areas with medium-resolution imagery is costly and often constrained by the lack of good
training and validation data. Our goal was to overcome these limitations, and to test chain classifications, i.e.,
the classification of Landsat images based on the information in the overlapping areas of neighboring scenes.
The basic idea was to classify one Landsat scene first where good ground truth data is available, and then to
classify the neighboring Landsat scene using the land cover classification of the first scene in the overlap area
as training data. We tested chain classification for a forest/non-forest classification in the Carpathian
Mountains on one horizontal chain of six Landsat scenes, and two vertical chains of two Landsat scenes each.
We collected extensive training data from Quickbird imagery for classifying radiometrically uncorrected data
with Support Vector Machines (SVMs). The SVMs classified 8 scenes with overall accuracies between 92.1%
and 98.9% (average of 96.3%). Accuracy loss when automatically classifying neighboring scenes with chain
classification was 1.9% on average. Even a chain of six images resulted only in an accuracy loss of 5.1% for the
last image compared to a reference classification from independent training data for the last image. Chain
classification thus performed well, but we note that chain classification can only be applied when land cover
classes are well represented in the overlap area of neighboring Landsat scenes. As long as this constraint is
met though, chain classification is a powerful approach for large area land cover classifications, especially in
areas of varying training data availability.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction
Large area land covermaps derived from satellite images play a key
role in global, regional and national land cover and land use
assessments, carried out for example by the United Nations (UN),
the Food and Agricultural Organization (FAO), or the United States
Geological Survey (USGS) (Cihlar, 2000; Franklin & Wulder, 2002;
Homer et al., 2004; Vogelmann et al., 2004). Such classifications allow
assessments of broad-scale forest fragmentation (Riitters et al., 2002),
carbon sequestration potential (Cruickshank et al., 2000; Niu &
Duiker, 2006), or the Wildland Urban Interface (Radeloff et al., 2005).
Therefore, large area land cover classifications present a basic
prerequisite for many scientific applications (Wulder et al., 2008).

Landsat satellite data is the most widely used data type for land
cover mapping because of its 35-year data record and its relatively
high spatial resolution (Cohen & Goward, 2004; Wulder et al., 2008).
Landsat data will become even more valuable as the Landsat Data
Continuity Mission (NASA, 2008; Wulder et al., 2008) ensures future
data availability. Decreasing costs, the availability of free Landsat data
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n).

ll rights reserved.
in the Geocover dataset (Tucker et al., 2004), the “Mid-decadal Global
Land Survey” (Khatib et al., 2007) and the USGS' decision to provide
free access to all Landsat data holdings offer opportunities for large
area land cover classifications using Landsat imagery.

Unfortunately, Landsat image classifications are commonly con-
ducted on one scene at a time, which limits the rapid analysis of large
areas (Cihlar et al., 1998; Cihlar, 2000) and requires that adequate
ground truth data are available for each scene. For large area
classifications, three approaches have been proposed and tested
before: single scene classification and subsequent mosaicking,
mosaicking of images and subsequent classification of the image
mosaic as awhole (Cihlar, 2000), and signature extension. In signature
extension, a classifier is trained on one scene and the resulting
signatures are applied to different scenes in space or time (Pax-Lenney
et al., 2001). Signature extension is promising, but has to account for
differences in topography, phenology, illumination, landscape varia-
bility, and atmosphere that result in spectral differences among
images. Tests in northwest Oregon showed that accuracy declined by
8–13% (depending on the atmospheric correction method applied)
when extending the classifier from an initial training image across
space to nearby scenes (Pax-Lenney et al., 2001). Across northern
Canada, classification accuracy dropped approximately by 50% when
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Fig. 1. The Carpathian mountain range and Landsat scenes in R–G–B bands 4–5–3 (border of the Carpathian Ecoregion overlaid in red). Numbering of Landsat scenes corresponds to
numbering in the text (sources: GLCF, ESRI Data, Carpathian Ecoregion Initiative).
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using signature extension for images that were about 1500 km apart
(Olthof et al., 2005).

A promising approach for mosaicking images prior to classification
is ‘applied radiometric normalization’ (Cohen et al., 2001). Here, the
overlap area between neighboring Landsat images is used to extend
information gained from a source image to neighboring images,
thereby creating a seamless mosaic for the classification. The first step
is to develop a relationship between the spectral measurements in the
source image, and continuous forest variables, such as percent
vegetation cover or stand age that are available from ground truth
data (Cohen et al., 2001). The second step is to apply the regression
equations that were developed, and predict the forest structure
attributes across the entire source image. In the third step, the map
with the predictions in the overlap area is used as ground truth to
develop new regression equations for the neighboring image, which
has most likely different phenology and atmospheric conditions. In
the fourth step, these regression equations are then applied to the
entire neighboring image. The resulting map of continuous forest
structure attributes for the entire study area can then be classified into
different forest types. When testing this approach in a 73,000 km2

study area inwestern Oregon based on two Landsat TM source images,
estimates for four forest cover attributes resulted in an overall
accuracy of 66% (Cohen et al., 2001).

Signature extension and the mosaicking of images prior to
classification have great potential for classifying large areas using
Landsat imagery. However, they require considerable effort to match
multiple images radiometrically. Here, we propose a new approach to
large area land cover classification that fills a gap between single scene
classification on one hand and signature extension or mosaicking on
the other hand. We suggest the term ‘chain classification’ for this
method.

Chain classification is similar to applied radiometric normalization
in that it uses the overlap area among neighboring Landsat scenes, but
we propose classifying one initial scene and then using the
classification in the overlap area to train a classifier for a neighboring
image. Once the second image is classified, it can be used as a new
initial scene to classify a third image and so forth. One potential
advantage of chain classification is that it does not require atmo-
spheric correction or regression matching of scenes to account for
radiometric differences. It can be applied both in horizontal directions
(across track), and in vertical direction (along track). Furthermore,
large area land cover maps often cover several countries or different
land ownership regimes. The availability of spatially well distributed
training and validation data is often limited in such situations. Chain
classification may offer a solution to this problem by using the image
with the best available ground truth data as the starting image in the
image chain, and by providing training data for neighboring images
from the image chain itself.

In principal, any classification algorithm could be used for chain
classification. However, Support Vector Machines (SVMs), a fairly
recently developed non-statistical classifier based on machine learn-
ing theory (Vapnik, 1999) offer some method-inherent advantages.
Comparisons with other classification algorithms show that SVMs
outperform or are at least as accurate as other parametric or non-
parametric classifiers (Huang et al., 2002; Pal &Mather, 2005; Dixon &
Candade, 2008).

SVMs are able to separate complex classes (Melgani & Bruzzone,
2004) such as in forest change analysis (Huang et al., 2008). In the
SVM, the location of decision boundaries for optimal class separation
is determined using kernel functions representing non-linear decision
surfaces (Pal & Mather, 2005; Vapnik, 1995). By constructing the
optimum hyperplane in feature space between two classes, an SVM is
a binary classifier focusing on the classes of interest only. To determine
this hyperplane, only the edges between the class distributions are
described based on a relatively small amount of training data (Foody &
Mathur, 2004; Foody et al., 2007; Mathur & Foody, 2008).

In summary, the overarching goal of this study was to develop a
simple, robust, and reproducible method for large area land cover
classification with minimal requirements for image pre-processing
and training data. To do so, we tested chain classification of forest and



Table 1
Landsat images used in this study.

Id Path/row Acquisition date

1 189/26 08/02/2000
2 188/26 05/26/2001
3 187/26 08/20/2000
4 186/26 06/10/2000
5 185/26 06/03/2000
6 184/26 08/21/2002
7 185/27 08/22/2000
8 184/27 07/04/2002
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non-forest based on the overlapping areas between Landsat scenes in
the Carpathian Mountains in Eastern Europe.

2. Data and methods

2.1. Study area

We selected the Carpathians as a study area to test chain
classification. The Carpathians represent a fairly homogeneous
ecoregion with mostly similar environmental conditions. However,
the study area includes seven countries with significant differences in
forest type, non-forest land cover classes, geology, and land use
patterns, and exhibits elevation-dependent vegetation gradients. This
variability generates an interesting test case to investigate the
feasibility of chain classification.

The Carpathians are located in central Europe and include parts of
Czech Republic, Slovakia, Poland, Ukraine, Hungary, and Romania
(CERI, 2001, Fig. 1). The study area covers about 185,000 km2. The
climate of the Carpathians is temperate-continental. Geology varies
from Carpathian flysh, consisting of sandstone and shale layers,
sedimentary rocks (mainly limestone), to a variety of crystalline rocks.
Elevations range from 300 m to over 2,000 m in the alpine belt of the
Tatra Mountains and the Southern Carpathians (KEO, 2007).

The forests of the study area are a patchwork of deciduous,
coniferous, and mixed stands, with pronounced vegetation zones
along the elevation gradient (KEO, 2007). Mixed deciduous forests,
dominated by pedunculate oak (Quercus robur), lime (Tilia cordata)
and hornbeam (Carpinus betulus), dominate the foothill zone.
European beech (Fagus sylvatica), silver fir (Abies alba), Norway
Fig. 2. Distribution of high resolution Quickbird
spruce (Picea abies) and sycamore (Acer pseudoplatanus) are
typically found in the montane zone (Perzanowski & Szwagrzyk,
2001). In some places, the montane zone is almost solely covered
by conifers, especially spruce plantations. At the timberline
(~1500 m), stone pine (Pinus cembra) stands exists (KEO, 2007).
Overall, about 60% of the Carpathian ecoregion is covered by forest
(KEO, 2007). A history of intense land use affected most forests,
transforming the landscape into a complex pattern of forests, arable
land, and pastures, varying significantly between countries and
regions (Turnock, 2002; Kuemmerle et al., 2006; Kozak et al., 2008).
In particular, the foothill zones and plains are dominated by
agricultural land use and forests are only small and scattered.

2.2. Satellite data and pre-processing

We used the optical bands of 9 Landsat Enhanced Thematic
Mapper Plus (ETM+) images recorded between 2000 and 2002 to test
chain classification (Table 1). Eight images were provided by the
University of Maryland Global Land Cover Facility (GLCF), and one
Level 1G scene (186/26) was purchased because of cloud coverage in
the GLCF data. A post-processed digital elevation model (DEM) from
the Shuttle Radar Topography Mission (SRTM) was acquired from the
GeoPortal provided by the Consortium for Spatial Information within
the Consultative Group on International Agricultural Research
(CGIAR-CSI; Jarvis et al., 2006) and resampled to 30 m to match the
resolution of the Landsat images. We orthorectified the additional
186/26 image using space resection based collinearity equations. The
corresponding GLCF image of 2000 served as a basemap for automatic
image-matching. 359 evenly distributed ground control points (GCPs)
with an overall root-mean-squared-error (RMSE) of b0.5 were
selected using an Automatic Point Measurement software tool (Leica
Geosystems, 2006). The image was rectified to Universal Transverse
Mercator (UTM) zone 34 and the World Geodetic System (WGS) 84
datum and ellipsoid. The images 189/026, 184/026 and 184/27 were
reprojected to UTM zone 34. We resampled all images to 30 m
resolution using nearest neighbor resampling to ensure consistency
among images. For the GLCF images, the RMSE-based geodetic
accuracy is b0.5 pixels (Tucker et al., 2004). We did not screen for
haze or disturbance factors other than clouds and no radiometric
correction was applied. Clouds and cloud shadows were digitized and
masked out for the analysis.
data (gray polygons) from Google Earth™.



Fig. 3. Processing scheme for chain classifications. Top: Derivation of the reference
classifications. Bottom: Chain classification procedure.

Table 2
Accuracy assessment for reference classifications.

Id Overall (%)
accuracy

Kappa
value

User's accuracy (%) Producer's accuracy (%)

Forest Non-forest Forest Non-forest

1 96.76 0.926 95.74 97.28 94.41 97.92
2 92.10 0.842 91.76 92.68 93.24 90.87
3 97.48 0.950 97.86 97.13 97.14 97.83
4 97.04 0.938 95.40 98.17 97.18 96.94
5 96.34 0.927 95.89 96.90 96.82 95.86
6 98.93 0.977 98.34 99.28 98.68 99.07
7 95.20 0.886 90.96 97.22 93.41 95.96
8 96.23 0.918 96.14 96.59 98.04 93.15
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2.3. Image classification with Support Vector Machines

SVM classification is based on delineating two classes by fitting an
optimal separating hyperplane to the training samples. The hyper-
plane is constructed by maximizing the margin between class
boundaries and is described by a subset of the training samples, the
so-called ‘support vectors’ (Boser et al., 1992; Cortes & Vapnik, 1995;
Foody et al., 2007). SVMs need training data that optimize the
separation of the classes rather than describing the classes themselves
(Foody & Mathur, 2006).

Using a radial basis function, class distributions with non-linear
boundaries can be mapped into a high dimensional space for linear
separation (Huang et al., 2002). Training the SVMwith a Gaussian radial
basis function requires setting two parameters: C is a regularization
parameter that controls the trade-off between maximizing the margin
andminimizing the training error, while γ describes the kernel width. A
small C-value tends to emphasize the margin while ignoring the
outliers in the training data, while a large C-value may overfit the
training data. A comprehensive description of SVMs can be found in
Burges (1998) and Cristianini and Shawe-Taylor (2000). Detailed
introductions in a remote sensing context are provided in Huang
et al. (2002), and Foody andMathur (2004). Training, classification, and
accuracy assessment were carried out using imageSVM (Janz et al.,
2007), an IDL/ENVI based tool for SVM classification of remote sensing
images using the LIBSVM version 2.84 (Chang & Lin, 2001).
2.4. Training and validation data

Training and validation data, here referred to as ‘reference data’,
was collected using Quickbird images in Google Earth™ (http://earth.
google.com). About 160 Quickbird images acquired between 2002 and
2007were available in Google Earth™ (Fig. 2) covering approximately
24% of our study area.

Reference data were collected using a random sampling design
(Wang et al., 2005; Lee & Huang, 2007). A random sample of 1400
reference points per Landsat image was selected within the area
covered by Quickbird imagery in each scene. We chose this number of
points, after initial tests based on learning curves showed that
selecting more than 500 points per class did not improve classification
accuracy significantly. Points were visually classified as either forest or
non-forest. The forest class in our study refers to forest as land cover
and includes primary forests as well as plantations, all forest types in
the study area (deciduous, mixed, coniferous forests) and all age
classes. All other land cover types (e.g. settlements, cropland,
pastures, and water) were defined as the non-forest class. Because
SVMs can delineate multi-modal classes in feature space, we did not
have to separate the non-forest training data into individual land
cover classes. All reference points were also cross-checked visually on
the Landsat images to account for changes that occurred between the
acquisition dates of Landsat and Quickbird images. Points indistinct in
Quickbird or covered by clouds were rejected from the analysis. At
most, 3% of the random samples were removed.

In a first step, all scenes were classified individually based on the
reference data that had been collected in each scene. We used these
classifications as the benchmark against which we compared the
chain classification results, and refer to the individual and indepen-
dent classifications as ‘reference classifications’ (Fig. 3 top). We used
cross-validation to obtain a robust estimate of the accuracy of these
reference classifications (Steele, 2005). Using ten-fold cross-valida-
tion, we split all available ground truth points into training (90%) and
validation (10%) samples and then classified each image 10 times for
all 10 possible splits. Based on each classification, an error matrix,
overall accuracy, user's and producer's accuracy, and kappa were
calculated (Congalton, 1991; Foody, 2002). The derived accuracy
measures for each classificationwere then averaged to calculate mean
error estimates (Friedl & Brodley, 1997). The final classification was

http://earth.google.com
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Fig. 4. Neighboring scenes with respective overlap areas. Striped: overlap area between two scenes across track; gray: overlap areas between two scenes along track.
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based on an SVM trained with 100% of the ground truth data, and the
mean error estimate is thus a conservative estimator of the true
accuracy (Burman, 1989). Overall accuracies based on the ten-fold
cross-validation ranged from 92.10% for scene 2 to 98.93% for scene 6,
with an average of 96.26% (Table 2).
2.5. Chain classifications using SVMs

The first step in the chain classification was to identify the
overlapping area between a reference classification serving as an
initial scene and the neighboring scene to be classified (Fig. 4). Within
the overlap area, 500 training points each for forest and non-forest
were randomly selected. We chose 500 training points, after initial
tests based on learning curves showed that selecting more training
points in the overlap area did not improve classification accuracy. All
training points were at least two pixels apart from forest–non-forest
boundaries to account for geometric uncertainty between GLCF scenes
(Tucker et al., 2004). The training data from the overlap area formed
the input for the SVM classification of the neighboring target scene
(Fig. 3 bottom). This procedure was repeated along a chain of
Table 3
Results of across track chain classification.

Test A A.L. K.L. Test B A.L. K.L. Test C A.L. K

1–2 4.50 0.0882
2–3 1.05 0.0214 1–2–3 2.41 0.0486
3–4 1.43 0.0315 2–3–4 2.38 0.0513 1–2–3–4 2.08 0
4–5 0.71 0.0174 3–4–5 4.10 0.0852 2–3–4–5 4.45 0
5–6 0.26 0.0091 4–5–6 0.53 0.0147 3–4–5–6 0.26 0

6–5 2.95 0.0624
5–4 2.33 0.0514 6–5–4 6.07 0.1367
4–3 0.84 0.0172 5–4–3 1.62 0.0329 6–5–4–3 3.55 0
3–2 3.24 0.0628 4–3–2 3.10 0.0601 5–4–3–2 3.59 0
2–1 1.82 0.0464 3–2–1 2.27 0.0566 4–3–2–1 0.88 0
Mean 1.91 0.0408 Mean 2.81 0.0607 Mean 2.47 0

A.L. = accuracy loss (%) of chain classified target scene compared to the respective referenc
respective reference classification. Target scenes in bold.
overlapping, neighboring scenes. Each former neighboring scene
served as a new initial scene in the next step along the chain.

2.5.1. Across track chain classification
Across track chain classification examined Landsat image neigh-

bors in East–West direction. A total of 10 different chain classifications
were possible among the six images in the northern row (Fig. 1). At
the latitude of our study area, the size of the overlap area between two
Landsat scenes across track was about 12,000 km2, equaling 35% of a
scene.

We also classified chains of more than one neighboring scene. The
longest chain included five scenes that were classified based on one
initial scene (Fig. 1). We expected decreasing chain classification
accuracy with increasing chain length.

2.5.2. Along track chain classification
Four tests were possible to test chain classification along track

(Fig. 1). The average along track overlap area was 3800 km2, equaling
11% of the scene area. We expected that classification accuracy would
be lower compared to across-track chains, given this rather small
overlap area.
.L. Test D A.L. K.L. Test E A.L. K.L.

.0444

.0920 1–2–3–4–5 3.07 0.0645

.0090 2–3–4–5–6 0.66 0.0175 1–2–3–4–5–6 0.82 0.0217

.0713

.0366 6–5–4–3–2 13.20 0.2581

.0242 5–4–3–2–1 2.10 0.0534 6–5–4–3–2–1 9.39 0.2398

.0341 Mean 4.76 0.0984 Mean 5.11 0.1307

e classification; K.L. = kappa value loss of chain classified target scene compared to the



Fig. 5. Results of two chain classifications (forest in black). Scenes 2 and 5 classified initial scenes; scenes 3 and 7 chain-classified target scenes.

962 J. Knorn et al. / Remote Sensing of Environment 113 (2009) 957–964
2.5.3. Across track chain classification based on two classified initial
scenes

Last but not least, we tested if chain classification results would
improve if the middle image in a chain of three images was classified
based on training data from the two images at the ends of the chain.
We expected that chain classification would perform better for the
centered scene, because not only one but both overlap areas were
used for chain classification.

The accuracy of the chain classifications was assessed indepen-
dently for each scene, using the available reference data for the
respective target scene. Ultimately though, the absolute accuracy was
less important to us than the loss in accuracy that was caused when
classifying a scene using chain classification. The performance of chain
classification itself was assessed calculating the overall accuracy loss
and kappa loss between a chain-classified target scene and its
respective reference classification (Fig. 3 bottom). For example, in
test 1–2–3–4 (Table 3— Test C), scene 1 was the initial scene, scenes 2
and 3 were intermediate chain classifications, and scene 4 was the
chain-classified target scene. The overall accuracy loss and kappa loss
were calculated by comparing the accuracy of the chain-classified
scene 4 and the reference classification of scene 4.

Additionally, we calculated the pixel-wise agreement between two
individually derived chain classifications for the same target scene to
indirectly evaluate the chain classification performance. If, for
Table 4
Overall agreement (O.Ag.) (%) between two individually derived chain classifications of
the same target scene (bold) across-track.

Test A O.Ag. Test B O.Ag.

1–2 84.95 1–2–3 95.94
3–2 5–4–3
2–3 95.00 2–3–4 88.80
4–3 6–5–4
3–4 92.88
5–4
4–5 93.30
6–5
Mean 91.53 Mean 92.37
example, scene 2 was the target of a chain classification that started
from scene 1 and from scene 3, respectively, pixel-wise agreement
was calculated as the agreement of the two resulting scene 2
classifications.
3. Results

3.1. Across track chain classifications

The results for chain-classifying the direct neighbors had overall
accuracy losses ranging from 0.26% for scene 5 to 6 (kappa loss
0.0091) to 4.50% for scene 1 to 2 (kappa loss 0.0882) with an average
of 1.91% (kappa loss 0.0408) (Table 3 — Test A; Fig. 5). Both tests
including scene 2 as a target scene, resulted in the highest overall
accuracy and kappa losses.

Accuracy and kappa loss tend to increase as more scenes were
added to a classification chain (Table 3). Average overall accuracy loss
ranged from 1.91% (kappa loss 0.0408) for two scenes in a chain up to
5.11% (kappa loss 0.1307) for six scenes in a chain.

The best pixel-wise overall agreement between two different chain
classifications for one scene from either neighbor was achieved for
scene 3 (95%, Table 4 Test A). The chain classification of scene 2, on the
other hand, exhibited only 84.95% in agreement. Average pixel-wise
agreement was 91.53% (Table 4). The same tests, but with three scenes
in a chain resulted in pixel-wise agreements of 95.94% with scene 3 as
a target scene, and 88.80% with scene 4 as a target scene (Table 4
Test B). Resulting average agreement was 92.37%.
Table 5
Accuracy-and kappa-losses along track.

Test A.L. K.L.

5–7 0.36 0.0107
7–5 1.98 0.0427
6–8 3.76 0.0808
8–6 0.33 0.0105
Mean 1.60 0.0362

Target scenes in bold.



Table 6
Results of across track chain classification based on two classified initial scenes.

Test A.L. K.L.

1–2–3–4–5 2.12 0.0429
2–3–4–5–6 0.78 0.0189
Mean 1.45 0.0309

Target scenes in bold.
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3.2. Along track chain classification

Contrary to our expectation, along track chain classification
outperformed across track chain classification. Chain classification
using only the small portion of overlap between scenes in North–
South direction had an average overall accuracy loss of 1.60% (kappa
loss 0.0362) (Table 5). Highest overall accuracy loss occurred using
chain classification from scene 6 to 8 with 3.76% (kappa loss 0.0808)
and lowest from scene 8 to 6 with 0.33% (kappa loss 0.0105).

3.3. Across track chain classification based on two classified initial scenes

Chain classifications of a target scene based on its two overlap
areas with neighboring scenes did not result in notably higher
classification accuracies (Table 6). A test based on scene 3, for
example, results in an overall accuracy loss of 2.12% (kappa loss
0.0429), while for scene 4 the overall accuracy loss is only 0.78%
(kappa loss 0.0189).

4. Discussion

We tested ‘chain classification’, a new approach to classify land
cover for large areas that uses a classification in one image to train a
classifier for a neighboring image. The average loss of accuracy when
comparing across track chain classifications to reference classifications
was only 1.91% with two images in a chain, 2.81% with three, 2.47%
with four, 4.76% with five and 5.11% with six scenes, respectively.
Average pixel-wise agreement between two individually derived
chain classifications of the same scene across track was 91.53% for two
scenes and 92.37% for three scenes in a chain. These outcomes
highlight that chain classification is a robust way to map land cover
across several scenes. Chain classification across track works well with
up to four scenes in a chain in our case (Table 3— Tests A to C). Outliers
in these tests followed no decisive pattern and are likely due to
irregularly distributed reference data (Fig. 2).

The small average loss of accuracy of along track chain classification
suggests that our approach works also well in North–South direction
even though the overlap area is fairly small in this case. The variance
within the accuracy losses showed again no clear pattern.

Across track chain classification basedon twoclassified initial scenesdid
not significantly improvewith scene 3 as a target scene compared to the
across track chains 1–2–3 (overall accuracy loss 2.41%) and 5–4–3
(overall accuracy loss 1.62%) (Tables 3 and 6). However, when scene 4
was the target scene, two-sided chain classification did perform better
compared to the corresponding tests 2–3–4 (overall accuracy loss2.38%)
and 6–5–4 (overall accuracy loss 6.07%). These results suggest that
classification accuracy can be enhanced by using two overlap areas for
the target scene when one-sided chain classification does not yield
optimum results. This strategy may furthermore be considered when a
target scene is located in a heterogeneous landscape and is not well
described by the training data of only one overlap area.

As is the case for all land cover classifications, training data should
be well distributed and cover all characteristic landscape features
across a scene. Due to the limited amount of Quickbird images in some
regions of our study area and the lack of other ground truth data,
reference data could not always be acquired with optimal distribution
(Fig. 2). The higher variance in accuracy loss within the across-track
tests are hence likely due to inhomogeneously distributed reference
data.

Overall accuracy of the reference classifications was 96.26% on
average. The stable performance across scenes with a limited amount
of training data supported our assumption that SVMs are an
appropriate classifier for chain classification. Nevertheless, chain
classification is not restricted to SVM as a classifier and may be
applied with other classifiers as well.

In chain classification, each scene is classified individually, with
training data that is unique to this scene, and which is derived from
the classified overlap areawith its neighboring scene. This means that
no signature extension from one scene to another is carried out and
radiometric correction or normalization procedures are not required.
This greatly simplifies image processing and eliminates a potential
error source. Examining illumination differences among scenes, chain
classification in combination with SVMs was robust and no illumina-
tion influencewas found. It is important to note though that successful
chain classification in mountainous areas requires accurate orthor-
ectification to account for differences in viewing geometry between
neighboring scenes. And screening and masking of clouds and cloud
shadows is necessary to avoid gross classification errors.

The good performance of chain classification in various tests
suggests that it is a valuable approach for large area land cover
classificationswith Landsat data. However, chain classification is by no
means the only approach for this task, and it is important to
understand advantages and disadvantages. In signature extension,
radiometric calibration or normalization between images is an
important preprocessing step (Pax-Lenney et al., 2001). This is not
necessary when applying chain classification. The advantage of
signature extension though, is the ability to extend classifications
between single images over large distances (Olthof et al., 2005), i.e.
neighboring scenes are not mandatory.

On the other hand, mapping large areas based on single scene
classification presumes extensive reference data for each image as
well as comprehensive resources for individual scene labeling (Cihlar,
2000). Chain classification uses only a small part of the image dataset
to classify large areas. Therefore, an interpreter can focus on fewwell-
classified initial images from where the rest is chain-classified.
However, unlike large area classification based on a single scene or
image mosaics, chain classification can only be applied to regions that
share most spectral features.

The ‘applied radiometric normalization’ method developed by
Cohen et al. (2001) is also based on the use of overlap areas between
scenes. However, here statistical models translate the desired
attributes of interest from the source image to the destination
image. In comparison, chain classification based on SVMs, a faster
and more straightforward process of land cover mapping, requires no
radiometric adjustments. Based on the available reference data, SVMs
generate an initial classification that serves for training the neighbor-
ing scene in the overlap area.

In summary, chain classification is a promising new tool for large
area land cover classification. The approach is simple in that it only
requires accurate georeferencing of scenes and no atmospheric
correction. The accuracy loss of our classification was low (about 5%
or less), even when long chains were classified. Chain classification is
particularly well suited in areas where training data is only available
for few scenes. This is the case, for example, in areas of different forest
ownership and hence different base map availability (e.g. state forest
versus private forest), in many remote areas, or in places that are
inaccessible or lack high resolution information for any other reason.
Chain classification is much faster and lower in work load than single
scene classification, but more limited in the total area that can be
classified compared to signature extension and mosaic classification.
Chain classification is not restricted to any sensor as long as enough
overlap area between scenes is provided and the land cover is
homogenous across the images. An issue to be considered in future
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chain classification approaches is the use of a “hybrid” training sample
collection to overcome the limitations set by the need of homogeneity.
Here, in the case of missing or insufficient representation of classes in
the overlap area, additional training samples would be collected
manually in the target scene and added to the SVM chain classification
procedure. Chain classification could also be used to classify images
from different sensors, radiometric or geometric resolution, in the
same chain as long as enough overlap area exists. In this study we
applied chain classification to assess forest cover, but any other cover
type can be considered as well, providing the potential for further
applications in the context of large area land cover mapping.
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