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[1] LiDAR data are increasingly available from both airborne and spaceborne missions
to map elevation and vegetation structure. Additionally, global coverage may soon
become available with NASA’s planned DESDynl sensor. However, substantial challenges
remain to using the growing body of LiDAR data. First, the large volumes of data
generated by LiDAR sensors require efficient processing methods. Second, efficient
sampling methods are needed to collect the field data used to relate LIDAR data with
vegetation structure. In this paper, we used low-density LiDAR data, summarized within
pixels of a regular grid, to estimate forest structure and biomass across a 53,600 ha
study area in northeastern Wisconsin. Additionally, we compared the predictive ability of
models constructed from a random sample to a sample stratified using mean and standard
deviation of LiDAR heights. Our models explained between 65 to 88% of the
variability in DBH, basal area, tree height, and biomass. Prediction errors from models
constructed using a random sample were up to 68% larger than those from the models built
with a stratified sample. The stratified sample included a greater range of variability than
the random sample. Thus, applying the random sample model to the entire population

violated a tenet of regression analysis; namely, that models should not be used to
extrapolate beyond the range of data from which they were constructed. Our results
highlight that LiDAR data integrated with field data sampling designs can provide
broad-scale assessments of vegetation structure and biomass, i.e., information crucial

for carbon and biodiversity science.

Citation: Hawbaker, T. J., N. S. Keuler, A. A. Lesak, T. Gobakken, K. Contrucci, and V. C. Radeloff (2009), Improved estimates
of forest vegetation structure and biomass with a LIDAR-optimized sampling design, J. Geophys. Res., 114, GOOE04,

doi:10.1029/2008JG000870.

1. Introduction

[2] Vegetation structure is of key importance when quan-
tifying forest resources [Maclean and Krabill, 1986; Nelson
et al., 1988], the availability of wildlife habitat [Bergen et
al., 2007; Hyde et al., 2006, MacArthur and MacArthur,
1969], and the functioning of ecosystem processes [Cramer
et al., 2001; Gower et al., 1999]. Optical satellite data have
been used to map and quantify vegetation type [Bauer et al.,
1994; Wolter et al., 1995], structure [Cohen and Spies,
1992; Jakubauskas and Price, 1997], and forest biomass
[Fassnacht et al., 1997; Gower et al., 1999; Zheng et al.,
2004]. However, optical satellite data do not provide direct
measurements of vegetation structure attributes such as tree
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height. Thus, the conceptual models linking vegetation
structure to optical data may vary among ecosystems and
vegetation types.

[3] In contrast, light detection and ranging (LiDAR)
sensors rely on reflected laser pulses to measure ground
and vegetation heights directly, and that makes them ideal
for mapping the structure of vegetation [Neesset, 1997b].
Additionally, LiDAR is well suited for quantifying forest
biomass and timber volume because these forest attributes
are directly related to the vertical distribution of LiDAR
pulses [Neesset, 1997a; Nelson et al., 1984, 1988; Nilsson,
1996]. Consequently, LiDAR data are being increasingly
used for ecological studies [Lefsky et al., 2002] and habitat
modeling [Goetz et al., 2007; Vierling et al., 2008], but most
study areas have been relatively small and broad-scale
applications have been noticeably lacking (but see Neesset
et al. [2004]).

[4] Quantifying vegetation structure and biomass across
broad spatial extents has been limited in part by the lack
of LiDAR data. Even when data are available, the sheer
volume of information presents a significant computa-
tional barrier, especially when high-density pulses are
collected (>1 pulse/m?). However, high-density LiDAR
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data, while necessary for individual tree crown delinea-
tion [Brandtberg et al., 2003; Hyyppd et al., 2001; Leckie et
al., 2003], may not be required for more general character-
ization of vegetation structure and biomass. Low-density
(<1 pulse/m?) LIDAR data have been useful for quantifying
vegetation structure and biomass [Gobakken and Neesset,
2008; Magnusson et al., 2007]. Low-density LiDAR data are
becoming increasingly available in the U.S. through the
Federal Emergency Management Agency (FEMA) flood
hazard mapping program (http:/www.fema.gov/plan/prevent/
thm/lidar 4b.shtm) and other state and regional efforts to
update digital elevation models. These data offer promise
for mapping vegetation structure at regional scales (T. J.
Hawbaker et al., LIDAR-based measures of mixed hardwood
forest structure, submitted to Forest Science, 2009).

[5] Most LiDAR data are collected by airborne sensors,
but there are also spaceborne LiDAR missions. Currently,
the Ice, Cloud, and land Elevation Satellite (ICESAT) is
collecting LiDAR data that can provide information on
vegetation structure [Harding and Carabajal, 2005; Lefsky
et al., 2005a]. However, ICESAT was not originally
designed to measure vegetation, and its large footprint limits
its utility for this purpose. This is why NASA is currently
planning a new mission (Deformation, Ecosystem Structure,
and Dynamics of Ice (DESDynl), http://desdyni.jpl.nasa.
gov/ [Donnellan et al., 2008]), to collect data on vegetation
structure across the globe. The mission concept for DESDynl
envisions a combination of LiDAR sensors, which will
collect data along transects, and InSAR sensors for wall-to-
wall coverage. Both the increasing availability of airborne
LiDAR data and the promise of spaceborne missions present
exciting opportunities for broad-scale mapping of vegetation
structure and biomass, which will provide crucial informa-
tion for carbon and biodiversity science.

[6] The scientific challenges that remain though are
twofold. The first is how to derive biological information
from LiDAR data over large spatial extents efficiently, and
the second is how to obtain the field data needed to correlate
LiDAR data with tree height, basal area, biomass, etc.
Neither of these challenges is trivial. In regards to the first
challenge, Neesset [2002] pioneered methods to calculate
indices of pulse density at different heights from single-
return LiDAR data. The advantage of this approach is that it
reduces the data volume considerably (all LIDAR returns
within a given grid cell are summarized into 20 indices),
and that it allows for efficient wall-to-wall mapping. Initial
applications of this approach were largely limited to boreal
forests with low tree species diversity, and dominated by
conifers [Neesset, 2002, 2004], but the approach has also
been successfully applied to temperate, deciduous forests
(Hawbaker et al., submitted manuscript, 2009), and war-
rants further testing in other forest types.

[7] The efficient collection of field data is the second
challenge limiting the broad-scale applications of LiDAR
and other remotely sensed data for quantifying vegetation
structure and biomass. Without field data, LIDAR provides
only absolute data on the height of the pulse reflections, and
all derived data on vegetation structure and biomass are
relative to those heights. Field data are essential to relate
with LiDAR height measurements for broad-scale assess-
ments of vegetation structure. The challenge is that good
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field data are not easy to obtain. Vegetation is often highly
variable in space and it is expensive and time consuming to
collect enough field data to capture the full range of
variability over broad spatial extents. Large areas need to
be covered and traveling among sampling sites is time
consuming in remote locations. Field plot sizes often need
to be large to correspond to the pixel size of remotely sensed
data, but large plots take time to measure, mainly because
measurements of vegetation structure, such as tree height,
are time-consuming [Avery and Burkhart, 2002]. Resources
for ground truth data collection are often limited and as a
result, the accuracy of vegetation structure and biomass
estimates may be limited by small sample sizes. There may
also be measurement errors in field data which propagate
into broad-scale estimates [Westfall, 2008] and remeasuring
field plots to assess errors requires additional resources.
Additionally, existing data sets of vegetation plots, such as
Forest Inventory and Analysis in the U.S., may neither
provide the necessary sampling density, nor contain plots
along the transects that ICESAT and DESDynl data are, or
will be, collected in. For all of these reasons, there remains a
need to identify efficient ways to collect ground truth data
across large spatial extents for quantifying vegetation struc-
ture and biomass.

[8] Thoughtful sampling designs can improve the effi-
ciency of field data collection and results of subsequent
remote sensing analyses using field sampled data. Regres-
sion models are typically used to relate field data to
remotely sensed data and then make broad-scale predic-
tions. The accuracy of modeled vegetation structure and
biomass can be improved if field data are collected across
the entire range of variability in the population. If random
sampling is used to select locations for field data collection,
it is likely that points at the edge of the data distribution will
be missed, especially when only a small fraction of the
entire population can be sampled [7hompson, 2002]. This is
problematic, because points at the edge of the data distri-
bution can be highly influential on regression model fit, and
model predictions made beyond the range over which the
data were collected can often lead to unreliable or unrea-
sonable results [Chatterjee et al., 2000].

[o] Stratified sampling includes data points at the edge of
the data distribution by design, and this ensures that the
regression models are not extrapolating beyond the range of
the field data and tends to reduce regression model predic-
tion errors. Stratified samples have been used in prior
LiDAR studies, with strata being defined based on man-
agement history [Lim et al., 2003], or forest age and site
index [Nesset, 1997b, 2002]. Such stratification surpasses
random sampling designs, but assumes that ancillary infor-
mation is available, and uses forest attributes likely to affect
vegetation structure as the basis for stratification, rather than
the actual data. To our knowledge, only one study has used
the actual LiDAR data to stratify their field sample [van
Aardt et al., 2006], and no study has systematically com-
pared a stratified sample based on LiDAR data with a
random sample. Such a comparison would be valuable
given the need for effective sampling designs for field data,
and the opportunities that broad-scale LiDAR data provides
for stratification, and ultimately for vegetation structure and
biomass assessments.
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[10] Thus, in this study, we had two goals, 1) to estimate
forest vegetation structure and biomass across broad areas
using LiDAR data as a predictor, and 2) to compare a
random field sampling design to a stratified sampling design
using LiDAR data as prior information.

2. Methods
2.1. Study Area

[11] We conducted our analysis in forested, public lands
of Oconto County in northeastern Wisconsin. This area
covers nearly 53,600 ha and landforms are primarily glacial
in origin [Martin, 1965]. Historically, forests in these land-
scapes were dominated by jack pine (Pinus banksiana) and
red pine (Pinus resinosa) on light, sandy upland soils and
white pine (Pinus strobus) on sandy loams. Mixed forests
occurred on heavier soils with white pine, hemlock (7suga
canadensis), balsam fir (4bies balsamea), white spruce
(Picea glauca), sugar maple (Acer saccharum), basswood
(Tilia americana), yellow birch (Betula alleghaniensis),
beech (Fagus sylvatica), American elm (Ulmus americana),
red oak (Quercus rubra), and ironwood (Ostrya virginiana)
[Curtis, 1959]. Logging was extensive and peaked in the
late nineteenth century [Flader, 1983]. Following logging,
farming was promoted and attempted in many areas, but
many farms ultimately failed and forests are again extensive
in this region although managed harvesting continues
[Gough, 1997]. All tree species still occur, but the present
composition of tree species is more homogenous than it
once was, and broadleaf species are now more common and
needle-leaved species less common than they were histor-
ically [Schulte et al., 2007].

[12] Public lands are extensive in Oconto County and
there are 45,100 ha of forest in the Chequamegon-Nicolet
National Forest and 8,500 ha in county forests. We restricted
our field sampling to these areas to facilitate property access.
Land ownership boundaries for the Chequamegon-Nicolet
National Forest and Oconto County Forests were provided by
the WI DNR [Wisconsin Department of Natural Resources,
2008].

[13] An existing land cover classification based on Land-
sat imagery [Wisconsin Department of Natural Resources,
1998] was used to split potential sampling locations into
deciduous and coniferous forest and to exclude sampling in
other land cover types (i.e., agriculture and urban). We
grouped mixed forests with deciduous forests because there
appeared to be spatial inconsistencies in where mixed forest
was mapped and there was not a substantial amount of
mixed forest on the landscape. In the field, most coniferous
forest pixels were truly coniferous and deciduous forest
pixels contained a mixture of both coniferous and deciduous
tree species.

2.2. LiDAR Data Collection

[14] LiDAR data were collected using a Leica ALS50
flown in leaf-off conditions during May of 2005 with an
altitude of about 2,000 m (6,500 ft) and flight speed of
240 km/h LiDAR pulse frequency was 34,700 Hz and the
beam footprint was 68.9 cm (2.26 feet). These LiDAR data
contained 1-3 returns and the density of all returns was
0.4 returns/m*. The horizontal accuracy of pulses was
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estimated to be 0.5 m. The ground-truthed vertical accuracy
was estimated to be 15 cm RMSE.

2.3. LiDAR Data Processing Methods

[15] The LiDAR data were first used to construct a digital
elevation model of the ground surface with 5 m resolution.
Second, we extracted all LiDAR pulses that fell in public
lands and classified them according to forest type, conifer-
ous or deciduous using the land cover classification. All of
these pulses were considered to have reflected off either
vegetation or the ground. The height above ground was
calculated by subtracting the ground elevation from each
pulse elevation. Pulses heights less than 1 m and greater
than 50 m were considered to be either ground or ‘noise’
and were excluded from the analysis. The remaining pulses
were aggregated to 30-m pixels (the same resolution as the
land cover data) and the mean and standard deviation of
pulse heights were calculated for each pixel (tiigar, Olidars
respectively). Other LIDAR summary metrics, such as
LiDAR height quantiles [Hopkinson et al., 2006; Nesset,
1997a; Hawbaker et al., submitted manuscript, 2009] and
the height above median energy for waveform LiDAR
[Anderson et al., 2006, Drake et al., 2002], have been used
to estimate vegetation structure and biomass. Exploratory
analysis of our data found the correlation between mean and
median LiDAR height was 0.99. Additionally, previous
research in similar forests types in southern Wisconsin
demonstrated that the mean and standard deviation of
LiDAR height are highly correlated with LiDAR height
quantiles and explain a similar amount of variability in
vegetation structure present on the landscape (Hawbaker et
al., submitted manuscript, 2009).

2.4. Sampling Designs for Field Data

[16] Each forested pixel with aggregated mean and stan-
dard deviation of LiDAR height values were potential
sampling locations. We compiled two sampling data sets
for comparison. The first was a random sample stratified
only by forest type. The second was a stratified sample that
used LiDAR data to define additional strata within forest
types. In the first, random sample design, we randomly
selected 30 pixels classified as coniferous forest and
60 pixels classified as deciduous forest for sampling loca-
tions. We selected a greater number of pixels in deciduous
forest because the landscape was primarily deciduous forest
and we expected greater variability in tree species compo-
sition and vegetation structure there. Some of the plots fell
on private land and were not accessible. Thus, our final
random sample sizes consisted of 28 plots in coniferous
forest and 53 plots in deciduous forest.

[17] Our second design used a stratified sampling
approach and we used the aggregated LiDAR height mea-
surements as prior information to stratify potential field sam-
pling locations across our study area. For each forest type,
potential sampling locations were stratified into 10 strata
according to the mean LiDAR height and then within each
stratum, an additional stratification into 3 strata according to
the standard deviation of LIDAR height was made (Figure 1).
This produced 30 stratifications total and within each stra-
tum, we randomly selected one coniferous forest and two
deciduous forest locations. This resulted in a total of 30 conif-
erous forest plots and 60 deciduous forest plots for sampling,
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(a) Coniferous Forests
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Figure 1. Example of deciduous forest sampling locations selected from all potential sites (gray solid
dots) using a completely random sample (open squares) and a hierarchical-stratified sample (open circles)
for (a) coniferous forests and (b) deciduous forests. Data were stratified first by the mean of LiDAR pulse
height (x axis) and then by the standard deviation of LiDAR pulse height (y axis). Black lines show the

breaks among hierarchical strata.

out of which 27 coniferous forest plots and 52 deciduous
forest plots were accessible and measured.

[18] We conducted exploratory data analysis comparing
the distribution of mean LiDAR height and standard devi-
ation of LiDAR height for the entire population, to distri-
butions from the random and stratified samples. Both
sampling designs estimated the mean of the population
well. However, the stratified sampling included a greater
range of variability in mean and standard deviation of
LiDAR heights than the random sampling (Figure 2). The
motivation for the stratified sampling design; was not
necessarily to capture the exact distribution of the popula-

tion but to include more data points in the tips and the tails
of the data distribution. We anticipated that models con-
structed from the stratified sample would perform better
than models constructed from the random sample.

2.5. Field Data Collection

[19] We used handheld global positioning systems (GPS)
to navigate to field sites until the GPS reported the location
was within 20 m, then maintained our heading and walked
exactly 20 paces to the final plot location. This procedure
introduced a level of randomness in establishing the exact
plot location, and ensured that plot locations would not be
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Figure 2. Boxplots showing the median, quartiles, maximum, minimum, and range of values for
predictor variables, mean and standard deviation of LiDAR height, for all the locations that could have
been sampled, locations in the random sample, and locations in the stratified samples for both coniferous

and deciduous forests.

biased by field technicians reluctant to walk through dense
understory vegetation. Once the plot center was established,
we recorded the actual plot location with a Trimble ProXH
GPS, which was later postprocessed to submeter accuracy.

[20] At each plot location, we recorded species and
measured the diameters of all trees with diameter at breast
height (DBH) > 12.7 cm that were within 17 m of the plot
center. Total tree height was measured for a subset of trees
selected using a 2.3 m?*/ha (10 ft*/acre) basal-area factor
prism. On average, there were 45 trees in each plot, and
heights were typically measured for 11 of them. Height
measurements from these trees were used to build regres-
sion models to predict total height for the remaining trees.
DBH was used to predict tree height and both DBH and tree

height were log transformed [Avery and Burkhart, 2002].
We accounted for plot-level differences in the relationship
between tree height and DBH by allowing the intercept and
slope to vary among plots using a linear mixed-effects
model [Gelman and Hill, 2007; Pinherio and Bates,
2002]. The root-mean square error (RMSE) for the natural
log of tree height in the resulting model was 0.15. Using the
measured DBH, we calculated total tree biomass using
species-specific allometric equations [Jenkins et al., 2003].
Finally, individual tree measurements were summarized
to the plot level (Table 1). These plot-level summaries
included mean DBH (cm), mean tree height (m), basal area
(m*/ha), and biomass (megagrams/ha or Mg/ha).
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Table 1. Summaries of Field Vegetation Data
Coniferous Deciduous
Random Stratified Combined Random Stratified Combined
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

DBH (cm) 23.93 4.20 27.80 8.30 25.83 6.77 22.75 4.94 25.84 8.02 24.28 6.79
In(1 + BA) [In(1 + m?*/ha)] 3.33 0.45 3.16 0.96 325 0.74 2.95 0.63 2.90 0.84 2.92 0.74
Mean tree height® (m) 18.85 3.46 20.61 6.31 19.71 5.09 3.01 0.15 3.06 0.33 3.03 0.25
Biomass (Mg/ha) 149.50 95.51 165.74 117.96 157.47 134.57 129.26 82.97 139.97 88.17 106.43 85.34

“Mean tree height values for deciduous forests were natural log + 1 transformed.

2.6. Regression Analysis

[21] Our first goal was to make countywide predictions of
vegetation structure and biomass. To accomplish this goal,
we used regression models to relate the plot-level summa-
ries of field tree measurements (mean DBH, total basal area,
mean tree height, total tree biomass) to plot-level LIDAR
height summaries; (mean lidar height, g, and standard
deviation of lidar height, oy;q.,; Figure 3). For countywide
predictions, we constructed regression models using all
sampling locations for a given forest type. Including all
field sample locations ensured that models were well
specified and captured the trend in the data. In our models,
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we initially included fujgor and oigar as predictor variables.
However, predictors were removed if they were not signif-
icant (p values > 0.05).

[22] There were slight, nonlinear trends in the relation-
ships between mean DBH and pi;q.r and ojiq.r and total
basal area and jugs. for coniferous forests (Figure 3). We
tested various data transformations to improve linear model
fits and found that natural log transformations improved
models of basal area for both forest types and mean tree
height for deciduous forests. More complicated, nonlinear
models may have explained the data better; however, our
sample sizes were small and there were few degrees of
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Figure 3. Scatterplots of field measured mean diameter at breast height (DBH), basal area (BA), mean
tree height, and total biomass against mean and standard deviation in LiDAR heights for coniferous and

deciduous forests.
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Table 2. Model Results by Forest Type Using All Sampled Locations®

Model Data Model Form R’ RMSE o4el Units
Coniferous DBH = f(ftigar + Olidar) 0.71 3.60 cm
Deciduous DBH = f(ulidar + Ulidar) 0.73 3.47 cm
Coniferous In(BA + 1) = f]In(ttiqar + 1)] 0.81 0.32 In(1 + mz/ha)
Deciduous In(BA + 1) = f[In(fuiigar + 1)] 0.65 0.43 In(1 + m?/ha)
Coniferous mean tree height = f(ftigar + lidar) 0.88 1.78 In(1 + m)
Deciduous In(mean tree height + 1) = f[In(ojigar + 1) + In(0jigar + 1)] 0.88 0.09 In(1 + m)
Coniferous biomass = f(/tigar) 0.75 45.55 Mg/ha
Deciduous biomass = f({4igar T Tlidar) 0.71 39.32 Mg/ha

“Here [uigar is the mean of LiDAR pulse heights and o4, is the standard deviation of LiDAR pulse heights.

freedom available to fit nonlinear models well. Therefore,
we continued the analysis with linear regression models. In
spite of the slight nonlinear trends, the scatterplots show that
the randomly sampled points did not capture the nonlinear
patterns in the data as well as the stratified sample.

[23] Our second goal was to evaluate the two sampling
designs and their influence on prediction errors for vegeta-
tion structure and biomass. To accomplish this goal, we
used the predictor variables selected in the countywide
models but estimated regression coefficient values using
only the data from each sample design. By using the
previously established countywide model form, each sam-
pling design could be evaluated as to how well it captured
the trends. This resulted in four models for each tree
measurement corresponding to the two sample designs
and two forest types (coniferous random, coniferous strat-
ified, deciduous random, and deciduous stratified).

[24] For each model, we calculated the root mean
squared error (RMSE) using the model predictions and
observations from the data set used to construct the model,
referred to as RMSE,,,qe1. Then, we validated models by
making predictions for the other sample design and
calculated the RMSE from its predictions and observa-
tions, referred to as RMSE, 4jiqae. Thus, models built with
the stratified sample were validated with the random
sample and vice versa. We expected that models built
using the stratified sample would have RMSE, 4¢ Values
similar to RMSE, ,jigare- Because the random samples may
not have included values at the edges of the data distri-
bution, which are more difficult to predict, we expected

RMSE, ,oqe1 for models built using the random sample
would be less than RMSE, 4jiqate-

3. Results
3.1. Countywide Model Results

[25] Regression models generated using all the sample
locations for each forest type explained a large proportion of
the variability in the data (65 to 88%; Table 2). Models for
mean tree height had the best fits, followed by coniferous
basal area, total biomass and then mean DBH. In almost all
models, both the mean and standard deviation of LiDAR
height (ptiqar and oyiqar) Were significant predictor variables
(p value > 0.05). Mean LiDAR height (14;q2;) Was the only
significant predictor in models of basal area.

[26] Regression models for coniferous forests tended to
explain more variability than models for deciduous forests,
except for mean tree height where model R* values were
equal between forest types. RMS errors were low for mean
DBH, basal area, and mean tree height and ranged from 3 to
15% of the mean observed values. However, RMS errors for
total biomass were larger, at 29% of the mean observed
value for both coniferous and deciduous forests (Table 2).

3.2. Influence of Sample Design on Model Predictions

[27] Overall, regression models constructed using either
sample design explained vegetation structure and biomass
well (Table 3). As was the case for the models constructed
with the full sample, mean DBH models explained the least
amount of variability. However, there were key differences

Table 3. Model Results and Errors for Individual Sampling Designs®

Model Data  Validation Data Model Form R? RMSE,odel RMSE,aiidate Units
CS CR DBH = f(iuigar + Tlidar) 0.76 3.56 391 cm
CR CS DBH = f({ttigar T Olidar) 0.54 3.20 5.17 cm
DS DR DBH = f(itigar + Oligar) 0.84 3.57 3.69 cm
DR DS DBH = f(uigar + Tlidar) 0.41 3.56 3.72 cm
CS CR In(BA + 1) = flIn(tuigar + 1)] 0.90 0.30 0.36 m?/ha
CR CS In(BA + 1) = fIn(gtyigar + 1)] 0.84 0.17 0.44 m*/ha
DS DR In(BA + 1) = fIn(pjgar + 1)] 0.79 0.38 0.41 In(1 + m?/ha)
DR DS In(BA + 1) = flIn(ptyigar + 1)] 0.69 0.35 0.49 In(1 + m?/ha)
CS CR mean tree height = f(ftigar + Olidar) 0.91 1.91 1.77 m
CR CS mean tree height = f(ftigar + Olidar) 0.73 1.75 1.95 m
DS DR In(mean tree height + 1) = f{In(tyigar + 1) + In(0yigar + 1)] 0.90 0.10 0.09 In(1 + m)
DR DS In(mean tree height + 1) = f{In(uigar + 1) + In(0jigar + 1)]  0.68 0.08 0.11 In(1 + m)
CS CR biomass = f({tigar + Olidar) 0.89 37.66 34.63 Mg/ha
CR CS biomass = f({tigar T Tlidar) 0.66 29.24 48.70 Mg/ha
DS DR biomass = f(/tigar T Tlidar) 0.84 34.54 31.40 Mg/ha
DR DS biomass = f(tigar T Tlidar) 0.74 27.44 47.61 Mg/ha

4CS, coniferous stratified; CR, coniferous random; DS, deciduous stratified; DR, deciduous random; ijiga,, mean lidar pulse height; oyig.,, the standard

deviation in lidar pulse height.
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between of the random and the LiDAR-stratified sampling
design.

[28] Comparing the two sample designs, R* values were
generally lower for the random sample models, but R? is
dependent on the range of sample values [Gelman and Hill,
2007] and can be expected to be higher for a stratified
sample, since a greater data range is sampled. As one would
also expect, regression models constructed using the ran-
dom sample generally had RMSE,qe1 values lower than
those for the stratified sample. This was not surprising since
the random sample focuses on the center of the data
distribution, which is easier to predict. The difference in
RMSE 041 between the two sample designs was large for
coniferous forests and ranged between 32 and 39%, except
for models of mean tree height where the difference in
RMSE 10401 Was 12% (Table 3). Differences in RMSE,,oqe1
between sampling designs in deciduous forests were less
pronounced and were between 5 and 9%, except for
biomass where the stratified sampling design produced
models with RMSE, qe1 31% less than models using data
from the random sampling design (Table 3).

[29] Generating predictions for one sample design with
models built using the other sample design demonstrated the
strengths and weaknesses of the two sample designs. The
random sample models performed poorly when predicting
values for the stratified sample (RMSE,jigaie). This was
especially evident for models of basal area, mean DBH, and
biomass in coniferous forests where RMSE,  jiqae for the
random sample models were up to 113%, 100% and 76%
greater than RMSE, 4.1 respectively (Table 3). These
results indicated that the random sample models were not
able to provide good predictions beyond the narrow range
of data used to build them.

[30] In contrast to the random models, there was little
increase in error when stratified sample models were used to
predict values for the random sample. The differences
between RMSE, ,qe1 and RMSE, ,jiqaie for the stratified
models were overall fairly small (Table 3). In most cases
the difference between RMSE, o 4e1 and RMSE,  jigate Was
less than 16%, except for the stratified model of coniferous
forest biomass where the difference was 36%. These results
demonstrated that the stratified sample models were able to
predict the random sample data nearly as well as they could
predict the stratified sample data used to fit them. In other
words, the stratified sample models predicted well at both
the center and at the edges of the distribution.

4. Discussion

[31] Our results showed that accurate quantification of the
spatial variability in forest vegetation structure and biomass
across broad spatial extents is possible using low-density
LiDAR data originally collected for terrain mapping. Our
findings confirmed previous studies that demonstrated that
consistent methods of processing and summarizing LiDAR
can be used across different vegetation types to estimate
vegetation structure and biomass, although the exact shape
of the relationship may vary [Hopkinson et al., 2006; Lefsky
et al., 2005b; Lim et al, 2003]. Consequently, airborne
LiDAR sensors provide a valuable tool for broad-scale
characterization of vegetation structure while requiring
minimal field data collection.
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[32] Mean LiDAR height was included in all models of
vegetation structure and biomass and was the only signif-
icant variable for basal area and coniferous forest biomass.
However, standard deviation of LiDAR height explained
additional variability in vegetation structure and was also
included in most other models. Our choice of mean and
standard deviation as LIDAR height metrics was somewhat
arbitrary and other metrics, such as height quantiles, have
proven to have greater explanatory power [Nesset, 2002,
2004]. However, previous research in similar forests types
in southern Wisconsin demonstrated that mean LiDAR
height explained nearly as much variability in forest struc-
ture as other height metrics (Hawbaker et al., submitted
manuscript, 2009). Although other LiDAR metrics may
have explained slightly more variability in the vegetation
structure and biomass, we believe the mean and standard
deviation explained a sufficient amount of variability in the
data to compare the effectiveness of different sampling
designs, a primary goal of our analysis. Our results dem-
onstrated that the stratified sampling design almost always
produced lower model errors and we believe the results
would hold true regardless of which metrics were used to
summarize the LiDAR height data. In any case, both mean
and standard deviation of LiDAR height and additional
variables [Neesset, 2002] can be easily calculated from
LiDAR pulse data that are summarized to grids and allow
for efficient processing of the large volumes of data gener-
ated by LiDAR missions.

[33] The comparison of the two sampling design high-
lighted the advantages of stratified sampling designs and
strongly suggests that LIDAR or other remotely sensed data
could be used to optimize sampling designs. The LiDAR
stratification ensured that the entire data range of the
predictor variables was sampled on the ground, and this
resulted in better predictions by LiDAR-derived regression
models. Well-planned sampling designs can greatly improve
predictive results for models based on remotely sensed data.
In contrast, random sampling did not capture the full range
of data. Thus, when regression models based on randomly
sampled data are extrapolated across broad scales, one of
the major assumptions of regression is violated; that pre-
dictions are made within the same range of data used to
build the model [Chatterjee et al., 2000]. Sometimes,
existing data are available and can provide valuable infor-
mation to help determine where to locate collection of field
data. Previous studies using LiDAR data for mapping forest
structure have relied on management history [Lim et al.,
2003], as well as forest age and site index [Neesset, 1997a,
2002]; however, these data are not available in many
regions. Stratifying data prior to analysis is common prac-
tice for many remote sensing applications [Carlotto, 1998;
McRoberts et al., 2002; Potapov et al., 2008]. However; the
use of LiIDAR data to delineate stratum prior to collection of
field data is another alternative, but appears to be rarely
used (except see van Aardt et al. [2006]). Our findings
suggest that using LiDAR or other remotely sensed data to
guide sampling designs will result in efficient collection of
field data and produce improved modeled results over
simple random sampling. Additionally, such sampling strat-
egies are a practical necessity given that making model
predictions based from a random sample will almost inva-
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Figure 4. Mapped (a) mean diameter at breast height (DBH; cm), (b) basal area (m*/ha), (c) mean tree
height (m), and (d) biomass (Mg/ha) for Oconto County, Wisconsin, United States. White areas did not
have LiDAR data, were not forest, or were privately owned and not accessible.
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riably result in the need to extrapolate past the range of the
observed predictors.

[34] The magnitude of prediction errors could potentially
be reduced by increasing sample sizes. However, prediction
errors were generally greater for models constructed from a
random sample of field data. In order to match the accuracy
of a stratified design, more data would need to be collected
from a substantially greater number of plots in a random
sampling design. Thus, thoughtful sampling designs can
result in higher predictive accuracy than random sampling
designs with the added benefit of requiring less effort for
field data collection.

[35] Our LiDAR-based maps of vegetation structure and
biomass provided a detailed assessment for a fairly large
study area (53,600 ha), and such broad-scale assessments are
key in order to translate LiDAR data into information
relevant for forest managers. Our LIDAR maps were derived
from low-density LiDAR data. As such, the prediction error
rates are probably similar to what could be expected from a
spaceborne mission, like DESDynl. The question is if the
prediction errors are acceptable for management purposes as
well. Our prediction errors were similar to those found for
tree heights and lower than those found for basal area in
previous LiDAR-based studies in similar forest types [Lim et
al., 2003; Hawbaker et al., submitted manuscript, 2009].
However, our prediction errors are still about 2 to 5 times
larger than measurement errors typical for forestry field
inventories [Avery and Burkhart, 2002], but the key is that
our predictions are wall-to-wall, whereas forestry field
inventories provide data for sampling points only.

[36] The richer information that a wall-to-wall map of
vegetation structure (Figure 4) and biomass provides coun-
terbalances the operationally large prediction errors. Com-
monly, forest inventory sample plots are aggregated at the
forest stand level, and intrastand level heterogeneity is not
mapped. The LiDAR maps of forest attributes provide much
more spatial detail, which can be as important for manage-
ment decisions as lower confidence intervals. Additionally,
the LIDAR maps can be aggregated to forest stands or other
spatial management units, and such aggregation will reduce
the overall error because pixel-level errors will cancel out
[Neesset, 2002]. Thus, even though error rates may be high
for any individual location, our estimates of vegetation
structure are likely to be accurate when viewed across broad
spatial extents. Spaceborne LiDAR systems, such as the
proposed DESDynl sensor, thus have the potential to
provide key information on vegetation structure and bio-
mass for management purposes, but LIDAR data should not
replace but rather be used in conjunction with field data.

[37] Perhaps most importantly, LIDAR data can provide
information for the vast areas of our planet for which we have
very little information, either because they are privately
owned and gaining access is often difficult, or because they
are so remote that field visits are rare. There will be new
opportunities for quantifying patterns of vegetation structure
and biomass across broad spatial scales with the release of the
Landsat data archive [U.S. Geological Survey, 2008] and the
pending availability of data from new active remote sensors,
such as DESDynl. The resolutions at which these sensors
collect data (~30 m) are amenable to sampling field data.
Assessments of vegetation structure and biomass often rely
on data collected both through remote sensing and fieldwork.
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Regardless of the sensor used (LiDAR, Landsat, DESDynl,
etc.), our study highlights the great potential of remotely
sensed data for vegetation assessments, especially when they
are well integrated with the design of field data collection
efforts.
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