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Fire is an important natural disturbance process in many ecosystems, but humans can irrevocably change
natural fire regimes. Quantifying long-term change in fire regimes is important to understand the driving
forces of changes in fire dynamics, and the implications of fire regime changes for ecosystem ecology.
However, assessing fire regime changes is challenging, especially in grasslands because of high intra- and
inter-annual variation of the vegetation and temporally sparse satellite data in many regions of the world.
The breakdown of the Soviet Union in 1991 caused substantial socioeconomic changes and a decrease in
grazing pressure in Russia's arid grasslands, but how this affected grassland fires is unknown. Our research
goal was to assess annual burned area in the grasslands of southern Russia before and after the breakdown.
Our study area covers 19,000 km2 in the Republic of Kalmykia in southern Russia in the arid grasslands of the
Caspian plains. We estimated annual burned area from 1985 to 2007 by classifying AVHRR data using
decision tree algorithm, and validated the results with RESURS, Landsat and MODIS data. Our results showed
a substantial increase in burned area, from almost none in the 1980s to more than 20% of the total study area
burned in both 2006 and 2007. Burned area started to increase around 1998 and has continued to increase,
albeit with high fluctuations among years. We suggest that it took several years after livestock numbers
decreased in the beginning of the 1990s for vegetation to recover, to build up enough fuel, and to reach a
threshold of connectivity that could sustain large fires. Our burned area detection algorithm was effective,
and captured burned areas even with incomplete annual AVHRR data. Validation results showed 68%
producer's and 56% user's accuracy. Lack of frequent AVHRR data is a common problem and our burned area
detection approach may also be suitable in other parts of the world with comparable ecosystems and similar
AVHRR data limitations. In our case, AVHRR data were the only satellite imagery available far enough back in
time to reveal marked increases in fire regimes in southern Russia before and after the breakdown of the
Soviet Union.
l rights reserved.
© 2010 Elsevier Inc. All rights reserved.
1. Introduction

Fire is one of the main disturbance agents in grasslands and
savannahs. Fire shapes vegetation structure and composition, and
represents an important land-management tool (Pyne, 1984). Grass-
lands, woody savannahs, and savannahs represent more than 60% of
the global burned area (Tansey et al., 2004), and in regions with high
aridity, such as Central Asia, grassland fires account for 80% of all
active fire counts (Csiszar et al., 2005). Fuel loads and emissions from
grassland burning are relatively small (van der Werf et al., 2006), but
grassland fires can foster the spread of invasive species (Brooks et al.,
2004), affect wildlife (Archibald & Bond, 2004), and cause air
pollution that can spread as far as the Arctic (Stohl et al., 2007).
Furthermore, interactions between grassland fires and human land
use may result in ecosystem degradation, hydrologic changes, soil
disturbance, and shrub encroachment (Archer et al., 1995). The
restoration, conservation and management of arid grasslands thus
require solid information on their fire regime and its change over
time. Our goal here was to assess fire regime changes in the grasslands
of southern Russia before and after the breakdown of the Soviet
Union.

Fire regimes in general are largely determined by fuel moisture,
fuel amount, and ignition sources (Bond & van Wilgen, 1996). Arid
grasslands are biomass-poor, and at least seasonally dry ecosystems,
in which fuel amount and connectivity are the main limiting factors
for fires (Meyn et al., 2007). Climate change can cause long-term
changes in fuel amounts, but land use affects fuel amounts more
directly and acutely. The main control of fuel amount in many arid
grasslands is livestock (Bahre, 1991). Unlike mesic grasslands, which
evolved with intensive mammalian herbivory, arid grasslands are
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more sensitive to livestock grazing (Mack & Thompson, 1982) often
leading to overexploitation and degradation (Akiyama & Kawamura,
2007; Zhang et al., 2007). Vegetation can recover when livestock
grazing decreases, and the resulting increase in fuel amounts and
connectivity may be able to sustain extensive wildfires (Liedloff et al.,
2001). However, fire increases resulting from a decrease in livestock
grazing have rarely been studied, and the long-term relationship
between livestock grazing, burning dynamics, and environmental
factors is not well understood. Thus, it is often inappropriate to study
livestock-fire relationships with small plots and difficult to employ a
classical experimental design at such broad temporal and spatial
scales.

Where controlled experiments are impossible, natural experiments
may offer insights (Diamond, 2001). Significant socioeconomic disrup-
tions and the resulting land-use changes can provide natural experi-
ments to study accompanying environmental changes (Kuemmerle
et al., 2007). Land-use change research typically examines how
socioeconomics affect land use directly (Lambin & Geist, 2006).
However, it may be that indirect cascading effects, such as alterations
of disturbance regimes, have a much larger effect on the ecosystem
(Burcher et al., 2007). In the context of livestock grazing and grassland
fires, the ideal natural experiment would comprise a strong decrease in
livestockgrazing, sufficient time for the resulting changes infire regimes
to manifest themselves, and relatively constant conditions for all other
relevant factors. The breakdown of the Soviet Union in 1991 provided
such a natural experiment.

The former Soviet Union including Russia experienced dramatic
changes in livestock population in the arid grasslands, such as in the
Republic of Kalmykia (Fig. 1). In the early 1970s, under state-
controlled plan-based economic policies, sheep numbers more than
doubled, and stayed at over 800 thousand heads for about twenty
years. During these years, the bulk of sheep industry was represented
by large agricultural enterprises, which overexploited the grasslands.
Grazing intensified up to a point where some pastures were grazed
year-round. Intensive grazing caused widespread wind erosion and
vegetation degradation (Zonn, 1995). Due to overgrazing, southern
Russia was called “Europe's first anthropogenic desert” in the mid
1990s (Saiko & Zonn, 1997). Some model forecasts predicted that
even with protection, more than 66% of southern Russia's grassland
would convert to bare sand by 2000 (Vinogradov, 1995), and
substantial governmental action was taken to combat desertification.

However, following the breakdown of the USSR in 1991 livestock
populations dropped by almost an order of magnitude (Fig. 1) and
remained low until around 2000 (Brooks & Gardner, 2004; ROSSTAT,
2007). Large collective and state-owned farms were no longer
subsidized after 1991, resulting in broad-scale de-collectivization
Fig. 1. Total sheep population in three administrative regions of the Republic of
Kalmykia (Chernozemelsky, Iki-Burulsky, Lagansky) which closely correspond to the
boundaries of our study area (ROSSTAT, 2003, 2007).
and abandonment. The livestock decline allowed vegetation to
recover and may thus have caused potentially an increase of grassy
fuels. Thus the hypothesis is that the decrease in grazing pressure
resulted in an increase in grassy fuels, and ultimately in an increase in
grassland fires. The problem is that no fire data are readily available to
test this hypothesis since official fire records for the region, similar to
other regions are incomplete and inaccurate (Soja et al., 2004).

Remote sensing and satellite data have been used for more than
20 years to monitor fires in many different parts of the world (Csiszar
et al., 2004). Coarse-resolution satellite data are one of the best
sources for historic burned area mapping because of their high
temporal resolution and long history of acquisitions (Arino et al.,
2001). Two basic types of algorithms exist to estimate fire affected
areas from Advanced Very High Resolution Radiometer (AVHRR) or
Moderate-Resolution Imaging Spectroradiometer (MODIS) data: a)
detection of active fires, and b) mapping burn scars or burned areas.
Though area burned correlates well with the number of fires, deriving
burned areas from active fire detections is error prone, especially in
some ecosystems, because the detected hotspots can underestimate
the actual burned area (Giglio et al., 2006; Hawbaker et al., 2008;
Miettinen et al., 2007). In contrast, burned area assessments identify
postfire disturbance, but not the actual fire event.

Typically, burned area mapping involves band differencing and
thresholding or classifying single or multitemporal data in the form of
raw band values and derivative indices (Arino et al., 2001; Gong et al.,
2006; Kučera et al., 2005). Burned area maps from coarse spatial
resolution data are prone to several types of errors: low resolution
bias, lack of imagery in certain areas, and geometric and radiometric
errors (Barbosa et al., 1999; Boschetti et al., 2004). Most of these
problems are more prevalent in AVHRR data, and have been solved or
notably reduced in recent sensors such as MODIS on board of Terra
and Aqua. However, MODIS images are only available since 2000 and
this relatively short time series limits the analysis of long-term trends.
Thus AVHRR remains the only remote sensing dataset capable of
reconstructing long-term (20+ years) burning trends (Chuvieco et al.,
2008; Kučera et al., 2005) at regional scale. The classification of
satellite images for burned area mapping typically requires regular
AVHRR observations, composited from daily data. Full resolution
AVHRR data (Local Area Coverage, LAC, or High Resolution Picture
Transmission, HRPT, both at 1.1 km at nadir) greatly improves the
classification of burned areas (Pu et al., 2007; Razafimpanilo et al.,
1995; Sukhinin et al., 2004).

Unfortunately, the amount and quality of AVHRR data vary greatly
among different regions. Daily AVHRR observations at 1.1 km spatial
high resolution are not always available, especially for those parts of
the world where local archives had not been established until the late
1990s. Southern Russia is one such area, and only a limited amount of
AVHRR data is available in international archives such as NOAA's
Comprehensive Large Array-data Stewardship System (CLASS, http://
www.class.noaa.gov/saa/products/welcome). Because of the limited
data availability, existing remote sensing methods designed to map
burned areas from AVHRR data cannot be applied and there is a need
to develop new approach to map burned areas in regions where only
CLASS-type AVHRR data are available.

The main goal of this study was to assess changes in burning in the
grasslands of southern Russia before and after the breakdown of the
Soviet Union. Our hypothesis was that annual burned area increased
substantially after the breakdown of the Soviet Union due to the
decline of livestock populations and more abundant fuels. Our second
goal was to develop and test a method to derive burned area trends
from temporally sparse CLASS-type AVHRR data. Our study was
motivated by 1) the absence of any solid information on distribution
of fires throughout 1980s and '90s in the study area and throughout
Central Asia, 2) substantial socioeconomic changes in the region
providing a unique ‘natural experiment’ to examine the effects of
decreasing livestock grazing on fire regimes, and 3) the need for a
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remote sensing approach that can map long-term burned area trends
in arid grasslands from sparse AVHRR data.

2. Methods

2.1. Study area

Our study area is located in the grasslands of Southern European
Russia and occupies about 19,000 km2 of the Republic of Kalmykia and
Astrakhan Region (Fig. 2). The study area was defined in the west and
east by the administrative boundaries of the Republic and in the north
and south by the boundaries of the common area of available AVHRR
overpasses. The study area is sparsely populated (population density
0.8 to 1.4 persons/km2) (CIESIN & CIAT, 2005) with no expectation for
population growth (CIESIN et al., 2005).

The climate of the study area is arid, with hot, dry summers (mean
daily temperature of +24 °C in July; max +44 °C, 280 days of
sunshine per year on average). Annual precipitation is 150 to
350 mm (with a mean of 286 mm for 1985 to 2007). Summer
droughts are common, and most of the precipitation falls in spring
(43% of all precipitation), coinciding with the period of most
vegetation growth (Walter & Box, 1983). The topography of the
study area is predominantly flat with a mean elevation of −15 m
below sea level. The study area has a complex geological history of
transgressions and regression of the Caspian Sea and soils character-
ized by a gradient from sandy aeolian deposits and sandy loams in the
southeast corner of the study area to clay loam in northwest corner
(Kroonenberg et al., 1997).

Vegetation associations are typical for northern Precaspian Plains
and represent combinations of steppe and desert types. The main
vegetation associations are shortgrass steppe (Stipa spp., Festuca spp.,
Agropyron spp., Anizantha tectorum, and other graminoids, Fig. 3) and
sage scrub (Artemisia spp., Kochia prostrate, Fig. 3) (Golub, 1994).
Shortgrass steppe is characterized by a short growing season in April
and May and rapid senescence in the dry summer. The grasses exhibit
fire adaptation due to dense bunches which protect seeds and
generate abundant fuels for burning. Sagebrush (Artemisia spp.)
dominated shrublands have less biomass, but a longer growing
season, and sometimes exhibit a second vegetation peak in the fall or
even early winter (Kurinova & Belousova, 1989). Artemisia spp. is
more susceptible to fire because its buds are situated above ground
Fig. 2. Study area location (hatched polygon with black outline), gray line— Republic of
Kalmykia; the grayscale background represents shaded relief (SRTM30).
and can be killed or damaged by fires. The lack of fire tolerance by
Artemisia spp. might lead to its substitution by Stipa spp. and other
graminoids. The primary human land use of the grasslands in the
study area is as rangelands to support grazing for domestic livestock,
mainly sheep and to a lesser extent cows and goats.

2.2. Study period

We studied burned area dynamics from 1985 to 2007. The choice
of the study period was determined by remote sensing data
availability and because of significant changes in land use after
1991. The 23 year fire record that we derived is one of the longest for a
burned area estimation with coarse-resolution satellite data. Other
burned area studies have either focused on forests or analyzed smaller
time spans while studies of equivalent time span are particularly rare
(Chuvieco et al., 2008; Kučera et al., 2005).

2.3. Data

2.3.1. Classification data
We used coarse spatial resolution AVHRR level 1B imagery in the

form of digital numbers to estimate burned areas and three types of
coarse- and medium-resolution satellite imagery for validation. We
chose AVHRR for our burned area time series, despite its limited
spatial and spectral resolutions, because the length of the AVHRR data
record matched our research goal to compare pre- and post 1991
burned areas. For the burned area classifications, we analyzed AVHRR
LAC images acquired by the National Ocean and Atmospheric
Administration (NOAA) satellites (9,11,14,16,17). LAC data are stored
onboard the satellite and downloaded at one of the NOAA receiving
stations. All daytime images from 1985 to 2007 were downloaded
from NOAA's CLASS. From these data, we selected a subset of images
ranging from April 1st to September 20th of each year, corresponding
to the beginning and the end of the growing season, and fully
capturing the time of summer droughts and thus the fire season. From
all images for each year, two images were selected according to the
following criteria: i) the sensor angle was less than 45° off nadir, ii) no
clouds obscured the study area, iii) the first image represented the
peak of the growing season or close to it (April, May, or early June),
and iv) the second image represented the end of the dry season and
the end of the fire season (late August to early September).

Typically, CLASS AVHRR LAC images covering whole study area
were available for every second day of the study period. Most of the
CLASS AVHRR LAC imagery had to be discarded though. For example,
in 2006, for the key period from April to September (i.e., 173 days), 90
images were available. However, among those, 49 images had
excessive cloud cover, 10 had scanner malfunction, and 29 were
≥45° off nadir for the study area. Among the 12 remaining images
that were not discarded only 3 were available before the burning
season (i.e., in May and early June) and 3 after the burning season (i.e.,
in August). The choice of our classification algorithm thus reflected in
no small part the lack of frequent CLASS AVHRR LAC images for our
study area.

We based our classification on the assumption that fires will raise
reflectance, due to the removal of vegetation, and that after fire event
brightness will remain elevated through the rest of the season.
Persistent increase in brightness was confirmed by preliminary
MODIS analyses (Fig. 4). Unfortunately, due to limitations in data
availability, the dates of the AVHRR images were not identical among
years. Image dates for the earlier image with the exception of 1998
(early April) were all from early May or the first week of June. Later
image dates ranged from early (1994, 2000, and 2005) to late August
and to early September. All satellite images were clipped to the study
area boundaries.

The two selected images for each year were then composited into
12 bands, where bands 1–3 represented the AVHRR spectral bands



Fig. 3. Feathergrass (Stipa sp.) (top) and sage (Artemisia sp.) (bottom) dominated communities in the beginning (left) and the end (right) of the vegetation season.
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from the spring image (620–670, 725–1100, 3550–3930 nm); 4–6
represented the AVHRR bands from the fall image; 7–9 were band
differences where each fall band was subtracted from the
corresponding spring band and offset value was added to avoid
negative numbers; and 10–12 represented NDVI for the first and
second images (NDVI1, NDVI2) and their difference (NDVI12). We
removed band 5 as it was not present for all AVHRR instruments. Band
4 was removed from the classification after preliminary analysis
showed that this band did not help differentiate burned from
surrounding, non-burned areas. Dark object subtraction was used to
correct the images radiometrically (Song et al., 2001). The minimum
observed value was selected from the Caspian Sea, and we subtracted
Fig. 4. 16-day MODIS reflectance values in bands 1 (triangles) and 2 (squares) for a
sample area (median of 9 pixels) affected by fire (hatched line denotes the fire date).
Winter-time snow contaminated values are not shown.
the digital number observed over clear water for each band from all
pixel values in each respective band.

2.3.2. Validation data
For validation, we used Terra/Moderate-Resolution Imaging

Spectroradiometer (MODIS), Landsat/Thematic Mapper (TM), En-
hanced Thematic Mapper Plus (ETM+) and RESURS/Multi Spectral
Scanner (MSU-SK) imagery. The MODIS Level 1B calibrated radiances
product (MOD02QKM) with 250-m resolution was obtained from
NASA's Level 1 and Atmosphere Archive and Distribution System
(http://ladsweb.nascom.nasa.gov) and used for validation from 2000
to 2007. In addition to the validation, we also used MODIS data to
estimate the temporal regime of burning (e.g., fire season length),
because of MODIS' high temporal resolution. Landsat TM/ETM+ data
were obtained from the USGS EROS Data Center at 30-m resolution for
1986 to 1989 and for 1999. Unfortunately, no TM/ETM+ data were
available in either public (USGS GLOVIS) or commercial archives
(Euroimage) for the period of 1990 to 1998. Instead we used RESURS
MSU-SK data obtained from R&D center Scanex (http://scanex.ru) at
150-m resolution and 4 spectral bands ranging from 540 to 1175 nm
for 1996 to 1998. All validation data was collected for the period
correspondent to period of the AVHRR data that we used (i.e., April–
September). Last but not least, we obtained official fire statistics
(Ministry of Emergency). Although the official fire statistics do not
include all burned areas, the statistics provided comparison for the
recent years of the burned area time series.

2.4. Data processing

2.4.1. Geometric correction
For every year in the sequence, the first AVHRR image was co-

registered to the MODIS image of June 7th 2008 with a second-order
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polynomial transformation and nearest-neighbor resampling in
ERDAS IMAGINE. The second image from a given classification pair
was then co-registered to the first image using the same approach. The
pixel size was set to 1.1×1.1 km. Semiautomatic tie point collection
provided an initial set of ground control points (GCP). For each image
from 7 to 10 GCPs were used for registration. Overall co-registration
accuracy (root mean square error) was less than one pixel for each
image.MODIS and Landsat data georeferencing accuracy is far superior
to that of AVHRR and no additional georeferencing was necessary
(Justice et al., 1998; Lee et al., 2004). Visual checking confirmed that
the georeferencing of the validation data to the AVHRR data and
1:200,000 topographicmapswasfine. RESURS datawere co-registered
to the June 7th 2008 MODIS image using the samemethodology as for
the AVHRR data. All imagery was reprojected to WGS84 coordinate
system and equal-area Albers projection (central meridian at 45°, first
standard parallel 52 and second standard parallel 64°).

2.4.2. Training data
Visual image interpretation provided training data for both burned

and unburned areas for the classification. For each AVHRR image pair,
a set of burned and non-burned areas was digitized. Burned areas
were identified based on one of two possible features. Areas that had
burned late in the season and were still black were characterized by
lower reflectance in the fall image, especially in AVHRR band 2
(Pereira, 1999). Conversely, areas that had burned earlier in the
season were highlighted by vegetation removal and a high proportion
of bare ground, causing higher reflectance in bands 1 and 2 of the fall
image. For every year, non-burned areas were also identified,
Fig. 5. Example of before-burning and after-burning in a Landsat TM image of September, 1
bounded by roads in the 2001 image, most of these scars are from previous years (marked
March, 18, 2006.
including unburned vegetation, bare ground, and water bodies. All
samples were combined into one comprehensive training dataset,
which consisted of 11,706 pixels (2629 pixels for burned areas and
8447 for non-burned). We used a combined training dataset, rather
than keeping training data for each year separate, because we could
not detect any visible burned areas in the AVHRR images in the 1980s.

2.4.3. Classification
Our classification method had to account for the fact that there

were major limitations in the AVHRR image availability (see above).
We used decision tree classification to calculate the certainty that a
given pixel burned in a given year. Decision trees are a robust
approach to classify satellite data (Friedl & Brodley, 1997; Hansen
et al., 2000) and are an effective tool for burned area mapping in
grasslands (Maggi & Stroppiana, 2002; Stroppiana et al., 2003).
Decision trees are nonparametric, i.e. no assumptions about the
underlying distribution of the data are made, and decision trees can
capture non-linear relationships between spectral data and different
information classes (Breiman, 1984). To create more generalized and
stable classification models we used a bagging approach (Breiman,
1996). Training data were sampled 30 times, each time extracting 15%
of the comprehensive training dataset. Each selected sample was used
to create a tree model resulting in an ensemble of 30 models. These
models were applied to classify each of the 23 annual AVHRR data
composites. The 30 classification results were then combined by
averaging to estimate the probability of burning from 0 to 100%. Based
on the probability, a simple majority threshold was used to tag the
pixel as burned. Lastly, we used a 3×3 majority kernel to filter and
988 and an ETM+ image of July, 2001 (5–4–3 band combination). Ubiquitous fire scars
with arrows). The photo represents an area burned in September, 4, 2005, photo taken



Fig. 6. Estimated burned area according to the AVHRR analysis (solid line), validation
dataset (dotted line, triangles) and official burned area data (dashed line, squares).

Table 1
Annual burned area estimates and validation results.

Year Burned
area,
km2

Burned
area %
total

Producer's
accuracy,
burned

User's
accuracy,
burned

Producer's
accuracy,
non-burned

User's
accuracy,
non-burned

Kappa

1985 0 0.0 N/A N/A 100.0% 100.0% N/A
1986 25 0.1 0.0% N/A 100.0% 99.9% N/A
1987 0 0.0 0.0% N/A 100.0% 98.7% N/A
1988 74 0.4 0.0% N/A 100.0% 99.6% N/A
1989 21 0.1 0.0% N/A 100.0% 99.9% N/A
1990 4 0.0 N/A N/A 100.0% 100.0% N/A
1991 0 0.0 N/A N/A 100.0% 99.5% N/A
1992 266 1.4 N/A N/A 100.0% 98.6% N/A
1993 90 0.5 N/A N/A 100.0% 99.5% N/A
1994 0 0.0 N/A N/A 100.0% 100.0% N/A
1995 0 0.0 N/A N/A 100.0% 99.8% N/A
1996 0 0.0 0.0% N/A 100.0% 99.4% N/A
1997 518 2.7 18.5% 82.3% 99.9% 97.8% 29.4%
1998 933 4.9 92.5% 34.2% 90.8% 99.6% 46.1%
1999 0 0.0 0.0% N/A 100.0% 99.9% N/A
2000 1602 8.5 78.2% 48.9% 92.4% 97.9% 55.5%
2001 417 2.2 62.3% 28.4% 96.4% 99.1% 37.1%
2002 2586 13.7 82.6% 64.1% 92.7% 97.1% 67.2%
2003 34 0.2 28.2% 0.4% 82.5% 99.8% 1.7%
2004 567 3.0 67.8% 32.5% 95.6% 99.0% 41.4%
2005 2193 11.6 52.0% 63.5% 96.1% 93.8% 50.5%
2006 3781 20.0 86.5% 73.8% 92.3% 96.5% 74.2%
2007 4397 23.3 72.8% 75.4% 92.8% 91.8% 66.4%
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smooth the classification results. This filtering may have removed
some correctly mapped small fires, but we employed it to ensure
conservative estimation of burned area and lower commission errors.

2.5. Validation

2.5.1. Burned area map validation
For the validation of the results we created an additional dataset of

burned areas from higher-resolution imagery (TM, ETM+, MODIS,
MSU-SK). Red–green–blue composites were created for each image,
using bands 2 (841–876 nm), and 1 (620–670 nm) from MODIS,
bands 5 (1550–1750 nm), 4 (760–900 nm), and 3 (630–690 nm) from
TM/ETM+, and bands 4 (810–1000 nm), 2 (600–720 nm), and 1
(540–600 nm) from MSU-SK imagery. We validated our classifica-
tions for each year for which validation data were available.

Similarly to training data selection, validation data were obtained
by visual image interpretation, shown to be at least as precise as
automatic methods (Bowman et al., 2002). Delineating burned areas
was straightforward due to distinct fire scar boundaries, often
confined by linear features such as roads (Fig. 5). The easy recognition
of fires was further facilitated by the lack of other disturbances in the
area that could have resulted in comparable patterns. In many cases
fire scars remained visible for 2 to 3 years after-burning, unless a new
fire overrode an older scar (Fig. 5). The elevated brightness of burned
areas was also quite stable intra-annually (Fig. 4). The validation
dataset was rasterized to the 1.1×1.1 km pixels. Omission and
commission errors were calculated for each year by combining binary
burned classification and rasterized validation datasets. Producer's
and user's accuracies were calculated from the four possible
combinational classes (Congalton & Green, 1998). Additionally, we
calculated the Kappa coefficient, which is a proportion of agreement
obtained after removing the proportion of agreement expected to
occur by chance (Congalton & Green, 1998).

2.5.2. Out of season validation
Because the AVHRR image dates were not uniform, we also

checked if sub-optimal image dates caused omission of some fires. We
tested this by comparison with numbers of active fire hotspots
captured by both TERRA and AQUA satellites (MOD14A1 and
MYD14A1). Based on the active fire data, we calculated the
percentage of fires between August 20th and August 30th compared
to the entire month of August, and the percentage of fires in August
and September to the entire fire season for each year from 2000 to
2007. Though the number of active fire detections is correlated with
the size of the burned area, this measure is not always reliable. Since
some of the selected AVHRR images were collected in early August
andwe found some active fires in September that were not covered by
the selected images, we extended the validation dataset until the end
of September for the years 2002 to 2007. This allowed us to estimate
howmuch burned area was missed due to the lack of optimally timed
AVHRR images in some years.

2.5.3. Model transferability validation
Due to the coarse resolution of AVHRR satellite imagery, the visual

estimation of training data may not always be reliable. Furthermore,
in some years, no burned areas could be found for training. Using a
comprehensive training dataset and a uniform set of decision tree
models for all years captured the variability in burned area signals,
and ensured that burning was not simply missed in a given year when
visually interpreting the AVHRR data. However, the use of the
comprehensive training dataset needed validation. To explore the
transferability of the model to years for which there was no burned
area training data, we removed training data for a set of years where
amount of burning exceeded 15,000 km2 (2000, 2002, and 2005 to
2007) from the comprehensive training dataset and repeated the
classification. These tests quantified the extent to which uniform set
of models was able to detect burning in one year in the absence of
samples from this year in the comprehensive training set.
3. Results

3.1. Annual burned area

Burned area increased dramatically from virtually no burning in
the 1980s and the first half of the 1990s, to up to 19% of the study area
(3600 km2) burned annually after 2000 (Fig. 6 and Table 1). Among
the 23 years that we studied, nine had substantial amounts of burned
areas, while the other 14 had less than 2% of the area burned. Eight out
of these nine high-burn years occurred after 1998 (Table 1). Large-
scale burning started abruptly in 1997 and 1998, when 5% of the
territory was burned and has continued regularly until today.
However, burned area showed a high degree of variability, with one
or two years of burning often followed by a year with negligible
burned area.

Among the different AVHRR-derived bands that we used for the
classification, the most important were the NDVI of the fall image and



Fig. 8. Fire seasonality, i.e., the burned area by month, based on the MODIS image
interpretation.
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the difference between spring and fall values of band 1 and band 3.
These metrics explained 47% of the variability; each contributed
respectively 24%, 14%, and 9% to the decrease of deviance for all 30
decision tree models. Other metrics were equally valuable and
contributed on average 6% of the deviance decrease.

Large fires contributed to the majority of the burned area. As
estimated using MODIS data, burns larger than 250 km2 represented
48% of total burned area. Though small fires (less than 60 km2)
represented 77% of the total number of fires since 2000, their share
accounted only for 18% of total burned area (Fig. 7). On average, the
five largest fires in a given year represented 66% of the total burned
area for that year. Since 2000, there was also a marked increase in the
area of the largest fire, which grew from 58% of the total area burned
in 2000 to almost 70% in 2006, and 71% in 2007 (1930, 3740, and
3120 km2 respectively).

3.2. Validation

3.2.1. Burned area map validation
Validation of the burned area maps relied on data from different

satellite sensors. For burned area delineations we used a total of 1066
MODIS images (a mean of 133 images per year, range 71–195), and 10
RESURS images (mean 3, range 2–4). MODIS data was available for the
entire burning season; RESURS data also covered the entire burning
season, except 1998, where the last RESURS image was acquired on
August, 20th. Validationwith Landsat data was based on September or
late August imagery, and we used only one late season image per year.
Average producer's accuracy of the burned area class in years where at
least 200 km2 burned was 68% (Table 1). Average user's accuracy for
the same years was 56% (Table 1). The Kappa coefficient for the same
year was 52% or moderate, according to classification scale by
Congalton (1996). It was not possible to validate independently 10
out of 23 years (1985, 1990–1995) due to the lack of MODIS, Landsat,
and RESURS data. No signs of burned areas were found for 7 of the
validated years (1986, 1988, 1996, 1999, and 2003). Official statistics,
available since 2002, were well correlated with the estimated trend,
but showed generally much less burned area than our classifications
(Fig. 6).

3.2.2. Temporal distribution and out of season validation
We estimated the temporal distribution of fires for 2000 to 2007

using MODIS active fire hotspots and our burned area boundaries
derived for validation. As reported previously (Carmona-Moreno
et al., 2005) burning predominantly started in June and ended in
August (Fig. 8). Few active fire hotspotswere detected before June and
in late August and September. The percentage of active fire counts in
August compared to a 3-month total was 26% (32% annual average),
Fig. 7.Number (line) and area (bars) of burned areas from 2000 to 2007 summarized by
size class.
and only 9% (12% annual average) of the total number of active fires
were detected in September. In August, most of the burning happened
in the beginning and the middle of the month. The percentage of
active fires detected during the last ten days of August was only 12%
of the total number of active fire counts during August (14% annual
average).

Burned areas mapped using MODIS data captured after the AVHRR
images were taken showed that only a small proportion of burns were
missed due to the timing of images. With the exception of 2003, less
than 2% of total burned area occurred after the AVHRR images were
taken (20 to 90 km2 in a given years). However, in 2003 only 3 fires
occurred in total, and one of those 3 occurred after the AVHRR image
date and covered 70 km2 or 63% of the total burned area in that year.
Some burningmay have taken place outside the windows captured by
the AVHRR in those years for which no MODIS data were available.
However, field observations, expert opinion and examination of
imagery for period before and after fire season indicated that such
burning was overall very limited.
3.2.3. Model transferability
We also tested how well our pooled training data could classify

burns in years for which no training data were available (or withheld
to test the transferability of the training data). Overall, the
transferability was moderate. The amount of burned area for a
particular year detected without training data from this year ranged
from 84% (2002), 52% (2006), 44% (2007), down to as low as 17%
(2005), of the area predicted with a full sample. Transferred models
were successful in detecting burns that led to the complete removal of
vegetation resulted in big areas of bare ground. Poor transferability in
2005 was likely due to a somewhat abnormal fire season. Unlike other
test years, most of the burned areas in 2005 happened late in the year
and showed low reflectance in visible bands due to large amounts of
remaining soot.
Table 2
Detection rates of burned areas in different size class categories.

Burned area patch size (km2)

b10 10–20 20–35 35–60 60–100 100–150 150–250 N250

Number of fires 144 64 48 39 31 19 16 14
Number of fires
detected

31 27 23 30 24 16 16 13

Percent detected 22 42 48 77 77 84 100 93
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4. Discussion

Our goals were twofold. First, we aimed to estimate changes in
burned area before and after the precipitous declines in livestock
caused by socioeconomic changes following the breakdown of
the Soviet Union. Second, we wanted to develop a method to map
burned areas from AVHRR data suitable for the parts of the world for
which only data from CLASS were available. Both goals were met
successfully.

Themain finding from our studywas a dramatic increase in burned
areas in the arid grasslands of southern Russia starting in the late
1990s (Fig. 6). The area burned each year jumped from almost no fires
in the 1980s to large-scale burning, covering up to 20% of study area in
a single year after the mid-1990s. Since 1998, on average 1381 km2

burned per year (9% of the study area, Fig. 9). At this rate, the entire
areawill burn every 11 years. Fires occurred almost exclusively during
the driest season of the year (Carmona-Moreno et al., 2005).
Unfortunately, no data on lightning occurrences and dry thunder-
storms exist for the area, but our field experience suggests that they
are rather rare. Thus we assume that most of the fires are human-
caused, resulting from transportation, mainly to and from local
herding enterprises, hunting activities, including illegal poaching for
Fig. 9. Burned areamapped for selected years with high fire activity. Gray shading— AVHRR-b
based, others — MODIS-based).
indigenous saiga antelope (Saiga tatarica), and carelessness (e.g.,
widespread use of oldmachinery, smoking, etc.). There is no history of
grassland burning for pasture management in the study area (Y.
Arylov, personal communication).

4.1. Burned area trends, vegetation, grazing, and socioeconomic changes

The abrupt increase in burned areas that we observed followed a
sharp decrease in livestock abundance around the time of breakdown
of Soviet Union in 1991.We suggest that themain mechanism leading
to the increase in fires was the removal of livestock, predominantly
sheep. Reduced disturbance by livestock allowed vegetation to
recover, and caused a gradual increase in biomass and fuel connec-
tivity. Grass-dominated vegetation communities (Stipa spp.) have
increased particularly rapidly (Neronov, 1998). Our results suggest
that this recovery of grasslands led to an increase of the amount
of dry litter that permitted the consequent significant increase in
burning.

Increase in burned areas was also concomitant with the reduction
of fire suppression activities in Russia, resulting from economic
hardship after the breakdown of Soviet Union in 1991, and the
major economic crisis of 1998 (Shvidenko & Goldammer, 2001).
ased burned area maps, black outlines— validation burned areamaps (1998— RESURS-
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Unemployment caused an increase in the number of visits by locals to
the steppe in search of other sources of income. Burning was used to
assist poaching of the endangered saiga antelope and led to near
obliteration of the last population of saiga in European Russia
(Lushchekina & Struchkov, 2001). Official burned areas statistics
were only available after 2002. The trends in the burned area statistics
correlated well with our AVHRR-based estimates, but official statistics
highly underestimated the area burned. Underestimation of fires in
governmental data is due to the fact that only fires that were actively
suppressed were included in official statistics (Soja et al., 2004).

The strong increase of annual burned area in late 1990s in our
study region is similar to other parts of the grasslands of Central Asia
and Mongolia. Being part of the Soviet block, these countries showed
similar socioeconomic changes and declines in livestock numbers.
Though fire data are scarce for Central Asia, there has been a 6-fold
increase in steppe and forest fires in Mongolia between the periods of
1985–1995 and 1996–1997 (Erdenesaikhan & Erdenetuya, 1999;
Velsen-Zerweck, 2002), similar to the pattern found in our study.

The area that burned most often occurred in a strictly-protected
nature reserve (Chernye Zemli Zapovednik) established in 1990, which
obtained Biosphere Reserve status in 1993, and covers 1220 km2 (6% of
the study area). The reserve allows research, conservation efforts, and
education, but prohibits any other human activities, like livestock
grazing or haymaking. The extra protection may have facilitated fuel
buildup in theprotected area. Togetherwith the livestock declines in the
surrounding areas, this may have caused increasing numbers of fires of
medium and large size. Although there is no ‘let burn’ policy in Russia's
protected areas, according to our estimation, the reserve burned almost
entirely in 2000, 2002, 2006, and 2007, most likely due to the lack of
funds for effective fire suppression.
4.2. Satellite data limitations

The only satellite dataset with annual data records spanned from
1985 until present that was available for southern Russia was CLASS-
type AVHRR data. Despite the limitations of CLASS-type AVHRR data,
we were able to develop a method to map burned areas and to detect
long-term trends in annual burned area. However, our accuracy
assessment highlighted the limitations of the available coarse-
resolution satellite data. We could not use burned area mapping
algorithms that require multiple (N2) images for a given year due to
the lack of good data in the archives, excessive cloud cover, as well as
geometric and radiometric artifacts. In our study area, daily AVHRR
data that could be composited were not collected by local stations
until the late 1990s. We suggest that the lack of data is largely
responsible for the reported classification accuracies, and higher
accuracies could have been obtained with if daily acquisitions were
available. However, despite its limitations, AVHRR data often provides
the only means possible to reconstruct dense time series of burned
area estimates for long time spans, prior to the launch of MODIS in
2000. Other remote sensing data, while providing better spectral and
spatial resolutions, lack temporal resolution, spatial coverage, and the
long-term data record necessary to give clear answer to the question
of how burned area changed throughout the recent 20+ years. This is
especially true for those regions of the world where remote sensing
data records are sparse due to poor archiving or lack of acquisitions.
Recent developments in remote sensing data distribution policy, such
as the ‘freeing’ of the Landsat data archives, may make it possible to
map burned areas with high resolution in time and space. However,
we caution that many areas of the world have acquisition gaps, and
methods like the one we present here will be needed to estimate
burned area trends for long time series. It would be necessary though
to acquire independent fire training and validation data for each study
area since our decision trees are specific to our study area and the
AVHRR images that we used.
4.3. Validation of the burned area estimates and the burned area
mapping approach

Our study dealt with a particularly long time series of satellite
observations and various satellite sources were used for validation
based on their availability. Though the accuracy of the estimates
derived in this study was moderate, similar accuracies were found in
comparable environments by studies using better data and more
advanced methodology (Roy & Boschetti, 2009). Differences among
the imagery used for validation may have resulted in some
inconsistencies in the reported accuracy rates, which we could not
quantify. Generally, the dataset with highest temporal frequency (i.e.,
MODIS) was best suited to delineation burned areas for our validation
dataset, followed by less frequent, but spatially more detailed
Landsat/TM, and finally the only data available for late 1990s (i.e.,
RESURS/MSU-SK).

Our analysis of the fire season with MODIS active fire data showed
that a few fires could have occurred after the dates of our AVHRR
images, but burned areas potentially missed were in all likelihood
negligible. Our conclusion that fires were essentially absent before
1998 was also supported by our test of the transferability of the
decision trees to years for which no training data for burned areas
were available. On average 42% of the burned areas detected with full
training data were still detected when training data for a given year
were omitted. That suggests that even if our visual interpretation of
fires in the AVHRR data prior to 1998 missed fires erroneously, our
models would have still captured a considerable portion of them.

We found that the largest fires captured up to 70% of the total area
burned in a given year (Fig. 10). Burned area classifications in
Southern California (Minnich, 1983), the IntermountainWest (Knapp,
1998), Mongolia (Erdenesaikhan and Erdenetuya, 1999) and Australia
(Yates et al., 2008) found similar pattern with the most of the burned
area attributed to few large contiguous burns. We caution though,
that the share of large burned areasmay have been overestimated due
to the low resolution bias of AVHRR data, resulting from the
1.1×1.1 km pixel size (Boschetti et al., 2004), and our use of a
majority filter. Omission of small burned areas with AVHRR data is
especially critical in mosaic environments representative of crop
production systems (Laris, 2005). We cannot rule out that fires were
just as frequent prior to 1998, but of such small size that AVHRR
missed them all (Table 2). However, this explanation for the observed
increase in burned area is highly unlikely. First, size class analysis with
higher-resolution MODIS data during the years since 2000, when fires
were widespread (Table 2) showed a clear dominance of large fires
(Fig. 7), supported by the contiguous nature of grassland vegetation
and the absence of crop production. And second, comparable rates of
burning expressed as much smaller fires would require much more
dense population (to provide ignitions, but also to suppress fires
before they got large) or fine patterns of land use (to prevent fires
from getting large). Neither was present in the study area historically.

Lastly, our finding that there was essentially no fire prior to 1998 is
supported by the only other remote sensing study in the study area. A
change detection for 1989 to 1998 by Hoelzel et al. (2002) did not
mention any burned areas as well. Though not quantified, sudden and
vast increase in burning in our study area after the mid-1990s has also
been mentioned in other studies (Shilova et al., 2007) and is
corroborated by members of local communities and other scientists
working in the area (Bakinova T.I., Dzhapova R.R., Neronov V.V.,
personal communications).

4.4. Concluding remarks

Our study provides one of the first estimates of burned area trends
for the arid grasslands of Central Asia, and represents one of the
longest burn area time series obtained using remote sensing here and
elsewhere in the world. Drastic socioeconomic changes often lead to



Fig. 10. An example of AVHRR-based burned area map for year 2000 (red polygons) comparing with MODIS-derived burned area validation data (outlined in black) shown on top of
the AVHRR image from Aug 1, 2000. The boundary of analysis region is shown in magenta.
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changes of a particular disturbance agent. In arid grasslands, the
decline in grazing might result in the transition of the ecosystem to
the different state. However, changes in vegetation due to reduced
grazing likely lead to the substitution of grazing by fire as the main
disturbance. Interestingly, the replacement of the disturbance agents
did not occur immediately, but exhibited a time lag. Knowing the time
lag between disturbances is important in order to make accurate
predictions, and we speculate that fire may again decline given
continuing restoration of livestock numbers returning to their historic
highs (Fig. 1). Whether we are seeing recovery of the ecosystem in the
long term or transition to a new state remains a question.
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