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Abstract. Many wild species are affected by human activities occurring at broad spatial
scales. For instance, in South America, habitat loss threatens Greater Rhea (Rhea americana)
populations, making it important to model and map their habitat to better target conservation
efforts. Spatially explicit habitat modeling is a powerful approach to understand and predict
species occurrence and abundance. One problem with this approach is that commonly used
land cover classifications do not capture the variability within a given land cover class that
might constitute important habitat attribute information. Texture measures derived from
remote sensing images quantify the variability in habitat features among and within habitat
types; hence they are potentially a powerful tool to assess species–habitat relationships. Our
goal was to explore the utility of texture measures for habitat modeling and to develop a
habitat suitability map for Greater Rheas at the home range level in grasslands of Argentina.
Greater Rhea group size obtained from aerial surveys was regressed against distance to roads,
houses, and water, and land cover class abundance (dicotyledons, crops, grassland, forest, and
bare soil), normalized difference vegetation index (NDVI), and selected first- and second-order
texture measures derived from Landsat Thematic Mapper (TM) imagery. Among univariate
models, Rhea group size was most strongly positively correlated with texture variables derived
from near infrared reflectance measurement (TM band 4). The best multiple regression models
explained 78% of the variability in Greater Rhea group size. Our results suggest that texture
variables captured habitat heterogeneity that the conventional land cover classification did not
detect. We used Greater Rhea group size as an indicator of habitat suitability; we categorized
model output into different habitat quality classes. Only 16% of the study area represented
high-quality habitat for Greater Rheas (group size �15). Our results stress the potential of
image texture to capture within-habitat variability in habitat assessments, and the necessity to
preserve the remaining natural habitat for Greater Rheas.

Key words: Argentina; grassland; Greater Rhea; habitat suitability; remote sensing; Rhea americana;
texture.

INTRODUCTION

Conservation of wildlife habitat has become an

increasing imperative as rates of habitat destruction

continue to rise (e.g., Nagendra 2001). Considering the

challenges for wild species, there is a clear need to better

understand spatial distribution of wildlife populations

and species–habitat relationships. Conservation is most

effective when efforts can be focused on habitat most

suitable for a species of concern, but the challenge is to

identify high-quality habitat across large areas.

Identifying high-quality habitat for a given species can

be difficult both because of logistical constraints, and

because of limited knowledge of habitat requirements.

Complete surveys alone are rarely feasible when

mapping high-quality habitat for a large area because

field investigations are expensive (Osborne et al. 2001,

Gibson at al. 2004), and field data may quickly become

outdated as habitat changes. However ground surveys

can be combined with remotely sensed data to build

predictive models, which in turn can be applied to broad

areas of similar habitat. Spatially explicit habitat

modeling, i.e., the use of statistical models to predict

the locations of suitable habitat, can also be used to test

ecological hypotheses regarding the response of individ-

uals to land cover, topography, and land use (Guisan

and Zimmermann 2000, Ottaviani et al. 2004). Because

of their importance for both science and management,

habitat models incorporating remotely sensed data have

been used to predict occurrence and abundance patterns

for many species (Elith et al. 2006), including wolves

(Mladenoff et al. 1995), bustards (Osborne et al. 2001),
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butterflies (Luoto et al. 2002), bears (Posillico et al.

2004), and eagles (Balbontı́n 2005).

In many habitat modeling studies, species presence–

absence or abundance patterns are related to habitat

measures derived from remotely sensed imagery (Turner

et al. 2003). Commonly, a land cover classification is

generated and used to predict species distribution based

on land cover class abundance and landscape indices

(Gottschalk et al. 2005). The application of landscape

indices to satellite image classification has substantially

contributed to the conservation of endangered species,

by broadening the scales of consideration to those

relevant to species of interest (McAlpine and Eyre 2002).

However the problem is that land cover classifications

are rarely based on the real habitat requirements of

specific wildlife species, and classifications commonly

aggregate habitat types, which causes errors in habitat

models (Hepinstall and Sader 1997, Luoto et al. 2004).

Another limitation of land cover classifications is that

they ignore habitat variability within a given land cover

class, an attribute which may strongly influence habitat

selection and use by wildlife species. For example, the

spatial arrangement of foliage height diversity may

determine the number of breeding species in a local area

(MacArthur and MacArthur 1961).

One approach that overcomes limitations of land

cover classifications for habitat modeling is to incorpo-

rate image-based measures of habitat heterogeneity into

habitat models (St-Louis et al. 2006). Image-based

measures do not depend on a land cover classification,

but are rather derived directly from the satellite image

(Haralick et al. 1973). Image texture measures are a

group of indices that can quantify the variability of

vegetation as a continuous variable. As such, texture is

advantageous compared to vegetation classification

because many statistical algorithms perform better with

continuous variables. Thus, texture measurements may

have great potential in terms of identifying spatial

habitat heterogeneity but to date only few studies have

used texture to assess wildlife–habitat relationships.

Where it was used, texture successfully predicted the

occurrence of forest bird species (Hepinstall and Sader

1997), avian species richness in a semiarid ecosystem (St-

Louis et al. 2006), and the abundance of Horned Larks

(Eremophila alpestris), Brewer’s Sparrows (Spizella

breweri), and Sage Sparrows (Amphispiza belli) in Idaho

(Knick and Rotenberry 2000). Texture also successfully

differentiated territories of two morphs of a passerine

species (Tuttle et al. 2006). However, we are not aware

of any studies that used texture to predict habitat

suitability for a species of conservation concern.

Our main goal was to evaluate the applicability of

texture measures as a potential tool for modeling habitat

suitability in conjunction with other ecological variables

using Greater Rhea (Rhea americana) as our test species.

We chose Greater Rhea because this species is threat-

ened by habitat destruction and is experiencing severe

population declines throughout its range, yet habitat

suitability at broad scales remains poorly understood.

Focused conservation efforts are needed to prevent
extirpation or even extinction of Greater Rheas.

The Greater Rhea is a charismatic bird species
endemic to South America that has been classified as a

near-threatened species by the International Union for
Conservation of Nature (IUCN 2007). Greater Rheas

mainly inhabit grassland ecosystems, one of the most
human-modified and least protected biomes in the world
(Demarı́a et al. 2003). In Argentina, Greater Rheas have

undergone substantial population declines largely due to
habitat loss and poaching (Bucher and Nores 1988,

Martella and Navarro 2006). However, Greater Rheas
can survive in agricultural areas if there is a mix of fields

containing alfalfa (Medicago sativa) and clover (Melilo-
tus sp), plus grasslands containing some wild dicotyle-

dons (e.g., Plantago lanceolata, Conyza bonariensis,
Cirsium vulgare, Phyla canescens; Bellis et al. 2004a,

Herrera et al. 2004). Unfortunately, grassland and
alfalfa fields are increasingly converted to croplands

(soybean Glycine max, sunflower Heliantus annus, corn
Zea mays, wheat Triticum aestivum, etc.), which has

adversely affected wild populations of Greater Rheas
(Bellis 2004). These land use changes occur not only in

Argentina but also throughout the range of Greater
Rhea in the savannas and grasslands of South America.

Our study had two major objectives: (1) assessing the
potential of satellite image texture measures for wildlife

habitat models, and (2) identifying habitat attributes
that affect presence and group size of Greater Rheas
(Rhea americana) at the home range level in central

Argentina and mapping habitat quality with image
texture.

METHODS

Study area

Our research was conducted in the pampas grasslands
of Argentina, located in the south-central part of San

Luis province (Fig. 1). In Argentina, most of the pampas
(94%) was transformed in agroecosystems (Bertonatti

and Corcuera 2000, Dı́az-Zorita et al. 2002); however,
grasslands still persist in areas considered unsuitable for
crops. The San Luis pampas belongs to the semiarid

western extreme of the pampas grassland; it is charac-
terized by sandy soils and rolling hills with both fixed

and active dunes. Climax vegetation is composed of
native grasses with islets of tree species, such as

Goeffroea decorticans, Prosopis caldenia, and Prosopis
alpataco. The dominant native grass species is Sorghas-

trum pellitum, mixed with Elyomurus muticus, Bothrio-
chloa springfieldii, Chloris retusa, Schizachyrium

plumigerum, Eragrostis lugens, Sporobolus subinclusus,
Aristida spegazzini, Poa ligularis, and Poa lanuginosa

(Anderson et al. 1970, Anderson 1973).
In the San Luis pampas, land transformation due to

ranching is the most important process affecting the
extent of this ecosystem; crop production is sporadic

because of low annual rainfall (,500 mm; León et al.
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1984). The grasslands are not uniform, partly due to the

conversion of native grasslands through introduction of

exotic grass species including Eragrostis curvula and

Digitaria eriantha to increase grassland forage quality

for livestock (Demarı́a et al. 2003). Four years of study

in the pampas comparing the San Luis grassland with an

adjacent area totally transformed to an agroecosystem

showed that agricultural expansion, especially the

increase of lands devoted to crops, reduced Greater

Rhea abundance and disrupted the spatial distribution

of the species (Bellis 2004, Giordano et al. 2008).

Because San Luis pampas is the last great grassland

Greater Rhea habitat in Argentina, we focused this

study on an area of 4782 km2 dominated by grassland

(55%) with crops and alfalfa fields present in lower

proportions (15% and 5%, respectively).

Field survey

Two aerial counts were conducted in the study area in

2004 following the approach developed by Caughley

(1974), Caughley and Sinclair (1994), and Sutherland

(1996). The first survey was conducted in May prior to

the September through November breeding season

(Bruning 1974, Reboreda and Fernández 1997), and

the second survey was conducted in December, during

the December to February post-reproductive season.

Aerial counts were performed from a Cessna 182

airplane flying at an average speed of 120 km/h and an

average altitude of 100 m. The flight direction was west

to east across each site, to avoid glare. The sampling

technique consisted of six strip transects 52 km in length

spaced at regular intervals of 10.4 km. The coordinates

of the flight path were generated in advance, and the

pilot carefully followed the survey design using a global

positioning system (GPS). The navigator determined the

beginning and end of each survey line. In the scheme of

flight controllable sources of bias, such as strip width,

altitude and speed (Caughley 1974) were carefully

monitored, and these variables were held constant.

Two observers seated side by side in the Cessna, which

has high wings, collected the data. Each observer

scanned a 170 m wide strip of ground delineated by

streamers on the aircraft’s wing struts. Observers

recorded the number of Greater Rheas, at the moment

they were perpendicular to the aircraft; even if they had

been detected in advance; therefore, counting and

position recording was almost simultaneous. Observers

marked Greater Rhea locations with a Garmin 12XL

GPS (GPS eTrex Legend; Garmin International, Olathe,

Kansas, USA). The average positional error for the GPS

locations during our survey was 9.2 m. Visibility within

the strip transect that was surveyed was comparable for

all habitat types.

Biological characteristics of the species

Greater Rhea (see Plate 1) is a non-territorial species

that commonly lives in flocks in a loosely cohesive social

system (Bruning 1974, Martella et al. 1995, Reboreda

and Fernández 1997). The most important components

of the Greater Rhea diet (90%) are native short-lived

FIG. 1. Habitat suitability maps for Greater Rheas estimated from using group size as an indicator of habitat quality.
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forbs (Phyla canescens, Plantago lanceolata, Conyza

bonariensis, Descurainina sp., and Cirsium vulgare) and

alfalfa (Medicago sativa); wild and cultivated gramine-

ous species (Eragrostis sp., Agropyron sp., Stipa sp.,

Cenchrus sp., Secale cereale, and Trichloris sp.) are eaten

in lower proportions. Greater Rheas also consume seeds

(Zea mays, Bromus sp., and Sorghum sp.), fruits

(Cenchrus pauciflorus, Argemone subfusiformis), inverte-

brates (pieces of teguments of several insects: Hemip-

tera, Orthoptera, and Coleptera), and small vertebrates

(Bufo sp., Teius sp.; Yagueddú and Viviani Rossi 1985,

Martella et al. 1996). Previous studies have shown that

Greater Rheas prefer habitats where dicotyledonous

species are available (Codenotti and Alvarez 2000, Bellis

et al. 2004a, Herrera et al. 2004). In agroecosystems,

alfalfa fields are the most commonly used habitat by

Greater Rheas. In addition to meeting foraging require-

ments, the open habitat of alfalfa fields facilitates

vigilance and escape from predators (Codenotti and

Alvarez 2000, Bellis et al. 2004a). At present, despite

legal protection of Greater Rheas by the national

government of Argentina, humans are their main

predator, persecuting and shooting individuals through-

out their range (Martella and Navarro 2006). Behavioral

studies of the species (Martella et al. 1995, Reboreda

and Fernández 1997, Fernández et al. 2003) have shown

that large group size benefits individual Greater Rheas

by reducing the risk of predation and increasing the time

available for feeding. Further, research showed that

large groups occur in habitat with high food availability.

The number of Greater Rheas at a location, i.e., group

size, can thus be used as an index for habitat quality at

that location. Group size was selected over abundance

or density because they have different effects (Estevez et

al. 2007). Whereas the density is determined by the

number of individuals per unit of space, the group size,

i.e., the number of individuals that form a group, is

closely associated with behavioral features related to the

cost–benefit balance of resource availability (Beau-

champ 2001, Fernández et al. 2003). However, we note

that group size is not a measure of absolute density, and

that our estimates may have been affected by different

detectability functions of Greater Rheas in different

habitats. To solve these limitations in future studies, we

recommend using survey methods adjusted for incom-

plete detection (Thompson 2002) as a rigorous approach

in the estimation of response variable. In the case of

gregarious species such as Greater Rheas, distance

sampling would be the preferred technique because it

allows consideration of the group size (ancillary data)

PLATE 1. Adult Greater Rhea (Rhea americana) in an experimental field near Córdoba, Argentina. Photo credit: J. L. Navarro.
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and the number of groups (clusters) per unit of space as

a density measure (Buckland et al. 2001).

Habitat measures

Understanding factors affecting Greater Rhea forag-

ing and survival allows selection of relevant habitat

elements as model inputs from among those that might

affect Greater Rhea distribution. The main ecological

variables known to influence Greater Rhea habitat

suitability in relation to food, water, and nesting

requirements, as well as human disturbance are sum-

marized in Table 1.

Water bodies, roads, and human settlements were

digitized from a topographic map of the study area

(1:250 000; Military Geographic Institute, Buenos Aires,

Argentina). Besides their importance as a source of

drinking water, plant communities dominated by dicot

species are found on the edges of water bodies (Herrera

et al. 2004), and are an important source of food. Roads

and houses were selected as indices of human distur-

bance. The digitized information on water bodies, roads,

and houses was transformed into a continuous variable

of distance expressed in kilometers using ENVI GIS

(ENVI 2004). Vegetation patches, normalized difference

vegetation index (NDVI), and texture measures were

calculated from a satellite image (December 2004

Landsat 5 TM image, path 230, row 084) using ENVI

GIS (ENVI 2004). The spatial resolution chosen for our

analysis was based on the home range of the species. In

grassland, Greater Rhea home range averages 11 km2

(Bellis et al. 2004b). We used a sampling area that

approximates 20% of Greater Rhea home range,

following the method of Laymon and Barrett (1986)

and Posillico et al. (2004). Thus the spatial resolution

applied to the analysis was a 1.5 3 1.5 km moving

window, including 2500 pixels. The mean value of all

pixels within the window was calculated for each

variable.

Land cover of the study area was classified based on a

2004 Landsat 5 TM image (path 230, row 084) from the

summer season (December). Using ground control

points from topographic maps (1:250 000) the satellite

image was georeferenced to a Universal Transverse

Mercator projection (zone 20 S, datum WGS 84). We

conducted a supervised maximum likelihood classifica-

tion using training sites for which land cover was known

from field reconnaissance. A post-classification accuracy

assessment showed an overall accuracy (calculated by

summing the number of pixels classified correctly and

dividing by the total number of pixels used for the

accuracy assessment) of 94.6% and a kappa coefficient¼
0.76 (ENVI 2004). The proportion of each land cover

class was summarized for each 1.5 3 1.5 km moving

window.

We calculated the NDVI (normalized difference

vegetation index; Paruelo et al. 1997, Oesterheld et al.

1998, Posse and Cingolani 2004) as an indication of

vegetation abundance. NDVI was calculated using the

following formula:

near-infraredðTM4Þ � redðTM3Þ
near-infraredðTM4Þ þ redðTM3Þ:

NDVI values fall between�1 andþ1; higher values show
higher proportions of photosynthetically active green

vegetation, and negative values indicate nonvegetated

surfaces. Also, we calculated the coefficient of variation

(CV, %) of the NDVI as a surrogate measure of

vegetation heterogeneity.

Image texture is the visual effect produced by the

spatial distribution of tonal variation in adjacent pixels

(Baraldi and Parmiggiani 1995). Texture analysis

characterizes the stochastic properties of the spatial

distribution of gray levels in an image (Dong-Chen and

Wang 1990). There are two types of texture measures:

first-order (occurrence) and second-order (co-occur-

rence). First-order texture measures are based on the

number of occurrences of each gray-level within a given

processing window. Second-order texture measures use a

gray-tone spatial dependence matrix (i.e., co-occurrence

matrix) to calculate texture values. The co-occurrence

TABLE 1. Independent variables selected for the habitat suitability analysis of Greater Rheas in the pampas grasslands of
Argentina.

Habitat requirements, variables Description of the variable Units

Food

Land cover grassland, crops, forest, bare soil, and dicotyledons proportion
Water distance to nearest water km
NDVI a proxy for vegetative cover and biomass index value
Heterogeneity of NDVI coefficient of variation (CV) %

Nesting and refuge

Land cover grassland, crops, forest, bare soil, and dicotyledons proportion

Vegetation structure

Texture, first order (TM bands) mean (3-4-5-7 ), variance (1 to 5) index values
Texture, second order (TM bands) mean (3-4-7), variance (4-5-7), homogeneity (7),

correlation (1 to 7), and second moment (1 to 7)
index values

Additional

Human impact distance to nearest house, distance to nearest road km
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matrix contains the relative frequencies with which pixel

values co-occur in a given neighborhood (Haralick et al.

1973, Dong-Chen and Wang 1990, Baraldi and Parmig-

giani 1995, Tso and Mather 2001). Following the

approach of St-Louis et al. (2006), we calculated four

first-order texture measures (mean, variance, entropy,

and skewness), and eight second-order texture measures

(mean, variance, homogeneity, contrast, dissimilarity,

entropy, second moment, and correlation) for each 1.53

1.5 km moving window. The 12 texture indices were

calculated separately for each of the six Landsat TM

bands with 30-m resolution. Texture analysis was

conducted in ENVI (ENVI 2004).

Global positioning system locations of each Greater

Rhea group were implemented into the GIS ENVI

(ENVI 2004) and checked for accuracy against a GIS

layer from the Military Geographic Institute of Argen-

tina. The error detected was ,30 m (i.e., 1 Landsat

pixel), which we deemed acceptable given that the

habitat analysis was performed at a resolution of 1.5 3

1.5 km.

Model building

The texture analysis resulted in 72 texture variables

(12 texture measures for each of the six bands) and an

additional 10 ecological variables. In order to avoid

colinearity, a pairwise correlation matrix of all predic-

tors was constructed. As many texture variables were

highly correlated we chose a 0.95 threshold to reduce the

total number of variables to a point where model

selection procedure runs efficiently. The correlation

analysis among the 82 independent variables showed

high correlations (r � 0.95; P , 0.001) for 45 of the 3321

pairwise comparisons. For these pairs, we retained the

variable with the highest r value among the two and

eliminated the other variable from further analysis. In

the end, a set of 38 independent variables (28 texture

measures and 10 ecological variables) was retained for

further analysis (Table 1). Scatterplots of the response

variable and the covariates did not indicate a need for

data transformation. We performed a leaps analysis

using the software package R (R Development Core

Team 2007). The leaps procedure utilizes a branch and

bound strategy for predicting the best subsets of the

explanatory variables in linear regression without the

requirement of a link function. It scans systematically

through all subsets at the same time, ‘‘leaping’’ over

those nonoptimal subsets (Furnival and Wilson 1974,

Miller 2002). Due to our small sample size (36 points),

the regression subset was bounded by a maximum

number of six explanatory variables. This restriction is

within the upper edge recommended considering the size

of data set and the number of observation per variable

(about seven in our case; Neter et al. 1990). We

examined the 25 best subsets including two to six

predictors, for a total of 125 models. For each of these

125 models, adjusted R2, the corrected form of Akaike

Information Criteria (AICc), and DAICc (i.e., AICc �

min AICc) were calculated to determine the best models

of Greater Rhea group size (Hurvich and Tsai 1989,

Whittingham et al. 2006). AICc is recommended for

small sample sizes, specifically when the number of

samples (n¼ 36) divided by the number of parameters (k

¼ 4–8 for the different dimension models) is smaller than

40. DAICc values allow a quick comparison and ranking

of candidate models. As a rule of thumb, models having

a DAICc with values varying ,2 from the best model

have substantial support, models with values between

three and seven have less support, and models with

DAICc .10 miss some important explanatory variables

(Burnham and Anderson 2002). We used a DAICc odd

of four for determining the models that are equally

strong at predicting Greater Rhea group size. This

cutoff was chosen because smaller cutoffs yielded only

slight differences in predictive power (e.g., difference in

adjusted R2 , 0.01).

In order to examine the role of spatial dependence in

the final models, we assessed the pattern of spatial

autocorrelation with semivariance analysis (Legendre et

al. 2002). We used this analysis because it is robust, it

allows identification of outliers in exploratory data

analysis, and it is a good estimator to reduce the

sensitiveness to outliers (Sun et al. 2003). These

characteristics as well as the simplicity of its estimation

make the semivariogram one of the techniques most

widely available for use by landscape ecologists (Meisel

and Turner 1998). We calculated a semivariogram of

each selected model, plotting the semivariance of

residuals against the distances between pairs of points

and, in all cases, there was no evidence of spatial

dependence.

The predictive power of models was evaluated by

means of a leave-one-out cross validation procedure.

This is an appropriate testing method when the data set

is quite small and/or when each sample is likely to have

unique information that is relevant to the model (Guisan

and Zimmermann 2000, Miller 2002, Ottaviani et al.

2004). A model was developed using a single observation

from the original sample as the validation data, and the

remaining observations as the training data. Using the

model estimated from the training data a prediction was

made for that observation. This procedure was repeated

for all 36 observations. The average error was computed

and used to evaluate the model.

Finally, we constructed habitat suitability maps for

Greater Rheas in our study area. The regression

equation of the best selected model was mapped using

ENVI GIS (ENVI 2004). The resulting map predicted

different habitat qualities for the species at a scale of

home range.

RESULTS

A total of 36 groups of Greater Rheas were recorded

in the study area during the 2004 survey. In these

groups, we detected 157 Greater Rheas, nine as solitary

individuals and 27 groups that ranged from two to 20
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individuals with an average group size of 4.36 6 0.7

individuals (mean 6 SE).

Habitat models

Of the total of 125 models estimated, 63 had a DAICc

,4 (Table 2). The best models, which used five or six

independent variables, explained up to 75% of the

variability in Greater Rhea group size. None of them

included variables related to human disturbance such as

proximity to roads and houses.

Of this group of models, we selected the most

parsimonious ones, which included five predictor

variables (Table 3). In all cases, the use of spectral

information including multiple texture measures and

NDVI produced the best results. Texture measures

derived from Landsat TM bands 3 and 4 exhibited the

highest predictive power; the other bands captured

substantially less or no variability. The association

between these variables and Greater Rhea group size

was negative for texture measures derived from TM

bands 1, 3, and 7 and the NDVI, and positive for texture

based on TM band 4 (Table 3). The overall accuracy of

cross-validation procedure of these seven best models

ranged from 50% to 69% (Table 3).

The regression equation of the best model (model 1,

Table 3) was used to map habitat suitability across the

entire study area. The resulting habitat suitability map

predicted the group size of Greater Rheas in each 1.5 3

1.5 km cell. Based on our assumption that Greater Rhea

group size is an indicator of habitat suitability, model

output was categorized into four habitat quality classes.

Areas where group sizes of .15 individuals were defined

as high quality, group size of five to 15 individuals was

considered moderate quality, and one to five individuals

was defined as low quality habitat. Areas with zero

individuals were defined as unsuitable habitats (Fig. 1).

TABLE 2. Frequency of times each variable was incorporated in the top 63 models for which the
DAICc compared to the highest ranked model was ,4.

Description,
independent variables

Number of variables in the models

2 3 4 5 6

Second order texture

Variance TM band1 0 0 1 0 0
Variance TM band2 0 0 1 0 6
Variance TM band3 0 0 0 0 3
Variance TM band4 0 1 18 2 12
Variance TM band5 0 1 3 0 1
Mean TM band3 0 0 0 7 25
Mean TM band4 0 0 1 2 10
Mean TM band5 0 0 0 0 0
Mean TM band7 0 0 0 0 1
Homogeneity TM band7 0 0 1 1 6
Correlation TM band3 0 0 1 0 0
Correlation TM band4 1 5 25 7 25
Correlation TM band5 0 0 2 0 0
Correlation TM band7 0 0 2 0 0
Second moment TM band1 0 0 1 1 2
Second moment TM band2 0 0 1 0 1
Second moment TM band3 0 1 3 1 3
Second moment TM band4 0 0 0 0 0
Second moment TM band5 0 0 1 0 0
Second moment TM band7 0 0 0 0 1

First order texture

Variance TM band4 0 1 6 2 5
Variance TM band7 0 1 1 0 0
Variance TM band5 0 0 1 0 0
Mean TM band4 0 0 1 5 15
Mean TM band7 0 0 0 0 1

Ecological

Grassland proportion 0 0 1 0 4
Crops proportion 0 0 2 0 4
Forest proportion 1 5 25 0 0
Alfalfa proportion 0 0 1 0 0
NDVI 0 0 0 7 25
CV_NDVI (%) 0 0 1 0 0

Number of models estimated 1 5 25 7 25

Maximum R2
adj 0.61 0.7 0.72 0.77 0.8

Minimum R2
adj 0.61 0.67 0.69 0.75 0.78

Note: The minimum and maximum adjusted R2 values obtained for this group of models are
shown in the last two rows.
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DISCUSSION

Our models represent a successful first attempt to

predict areas of different habitat quality for Greater

Rheas in grasslands of central Argentina. According to

our models, Greater Rhea group size was related to the

spatial heterogeneity of habitat as measured by texture

variables and NDVI. The selection of these variables is

likely due to use of these resources by Greater Rheas to

satisfy basic foraging requirements.

Image texture was a crucial element in the estimation

of the habitat suitability map for Greater Rheas, and

distinguished subtle variations within grasslands. Sec-

ond-order texture measures, especially correlation, were

most efficient at quantifying habitat attributes that

influence Greater Rhea group size. Correlation is a

measure of gray tone linear dependencies in the image

(Baraldi and Parmiggiani 1995). Pixels near each other

are more correlated than distant ones, suggesting that

image elements are aggregated. Mean texture value was

included frequently in the best models (Table 3); this

measure represents the average distribution of gray level

(Dong-Chen and Wang 1990), hence high values of

mean indicate more bright areas (such as bare ground

and grassland), and fewer dark areas (such as forests or

shadows) in an image. Second-order variance was also

included frequently in the best models; this measure

captures the spatial pattern of gray level deviation

(Baraldi and Parmiggiani 1995), and is a good indicator

of spatial heterogeneity. Finally, two texture variables

poorly represented in the models were angular second

moment and homogeneity, which both characterize the

textural uniformity of the image elements (Baraldi and

Parmiggiani 1995, Guo et al. 2004).

Among the six TM bands, texture measures based on

the near-infrared (NIR, TM4) band had the greatest

explanatory power in relation to Greater Rhea group

size. Because the NIR band is sensitive to vegetation and

the amount of biomass, variations in the textural

characteristics of this band likely capture difference in

vegetation cover. In grasslands, sites with higher forb

cover and higher forb species richness have higher

reflectance in NIR (Guo et al. 2000, 2004).

Wild forbs and cultivated dicotyledons are a preferred

food item for Greater Rheas (Yagueddú and Viviani

Rossi 1985, Martella et al. 1996). Sites with dense

grassland vegetation may also exhibit greater abundance

of these plants. Thus, the discrimination power of image

texture measures may be very useful for assessing

vegetation heterogeneity, indicative of dicotyledons,

within grassland.

The inverse relationship between NDVI and Greater

Rhea group size is most likely related to the presence of

bare soil in the area. Although our study area was

dominated by grasslands, 14.4% (688 km2) of the area

consisted of nonvegetation patches, resulting from

human activities. Dicotyledons are the most common

species in the vegetation gaps after a disturbance in

grassland (Bock and Bock 1992, Kinucan and Smeins

1992, Edward and Crawley 1999, Bullock et al. 2001,

Hayes and Holl 2003) because herbaceous dicots

dominate the initial stage of succession (Omacini et al.

1995). Consequently, the areas classified as bare soil

patches were likely to contain an abundance of the

feeding resources that Greater Rheas prefer. Addition-

ally, the reflectance of exposed ground areas might affect

the response of red wavelengths (TM3; Lawrence and

Ripley 1998, Weis et al. 2004) interfering with the

TABLE 3. Most-parsimonious models selected for estimating habitat suitability of Greater Rheas.

Model AICc DAICc R2
Overall

accuracy (%)

1) y ¼ 23 þ (1.68 3 variance TM band4) � (5.56 3 mean TM band3)
þ (4.74 3 correlation TM band4) þ (1.92 3 mean TM band41st)
� (186.32 3 NDVI)

163.98 0 0.805 69.4

2) y ¼ 33.45 � (5.75 3 mean TM band3) þ (4.61 3 correlation TM band4)
þ (0.11 3 variance TM band41st) þ (1.84 3 mean TM band4)
� (192.6 3 NDVI)

164.03 0.06 0.804 69.4

3) y ¼ 30.06 � (5.31 3 mean TM band3) þ (4.05 3 mean TM band4)
þ (4.76 3 correlation TM band4) þ (0.12 3 variance TM band41st)
� (180.63 3 NDVI)

165.49 1.51 0.797 58.3

4) y ¼ 70.67 � (6.45 3 mean TM band3) � (40.92 3 homogeneity TM band7)
þ (4.96 3 correlation TM band4) þ (2.03 3 mean TM band41st)
� (218.05 3 NDVI)

166.76 2.78 0.789 69.4

5) y ¼ 54.01 � (6.91 3 mean TM band3) þ (4.59 3 correlation TM band4)
� (26.31 3 second moment TM band1) þ (2.11 3 mean TM band41st)
� (232.35 3 NDVI)

166.93 2.95 0.788 50.0

6) y ¼ 33.14 � (5.84 3 mean TM band3) þ (5.08 3 correlation TM band4)
� (34.03 3 second moment TM band3) þ (1.96 3 mean TM band41st )
� (199.32 3 NDVI)

167.16 3.18 0.787 63.9

7) y ¼ 17.58 þ (1.77 3 variance TM band4) � (4.94 3 mean TM band3)
þ (4.15 3 mean TM band4) þ (4.85 3 correlation TM band4)
� (157.56 3 NDVI)

167.75 3.77 0.784 55.6

Notes: For these models DAICc compared to the highest ranked model was ,4. The values of AICc, DAICc, R
2, and overall

accuracy of leave-one-out cross-validation procedures are shown. The superscript ‘‘1st’’ indicates first-order texture variables.
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reflectance of TM band 3, and thus changing the

expected relationship between the red wavelengths and

Greater Rhea group size.

The habitat preferences identified in our models are

consistent with field studies of Greater Rhea use of

landscapes. In both grassland and agricultural lands,

individual Greater Rheas adjust their movements and

home range size in response to food availability (Bellis et

al. 2004b), and they forage preferably in habitat with a

high proportion of dicots (Codenotti and Alvarez 2000,

Bellis et al. 2004a, Herrera et al. 2004).

Human disturbance affects Greater Rheas negatively,

and illegal hunting in particular is a major conservation

concern (Bucher and Nores 1988, Bellis et al. 2004a,

Martella and Navarro 2006). However, contrary to our

expectations, the anthropogenic variables included in

this study were not strong predictors of Greater Rhea

distribution. It may be that the variables we used to

quantify human impact do not adequately represent the

threat Greater Rheas face from humans.

The prediction of high-quality habitat allows identi-

fication of the most critical areas for Greater Rhea

conservation within this study area. The assignment of

habitat into high, medium, low, and unsuitable quality

classes was made under the premise that group size of

Rheas is a good indicator of habitat quality. Individual

Greater Rheas select habitats where the profitability of

feeding is counterbalanced by the corresponding cost of

predation (Codenotti and Alvarez 2000, Bellis et al.

2004a). Foraging in large groups benefits individuals by

reducing predation risk through the dilution effect

(Fernández et al. 2003). Additionally, as the opportuni-

ties for feeding are more frequent in large groups and

when food occurs in clumps (Beauchamp 2001), we are

able to assume that habitats with high food abundance

or quality will support larger groups than areas without

these characteristics.

The validation phase is important in assessing the

predictive capability of any habitat model (Guisan and

Zimmermann 2000, Luck 2002, Ottaviani et al. 2004).

For Greater Rheas, model performance was moderately

good (cross-validation accuracy of 50–69%). Low

abundance of Greater Rhea groups and high natural

variance in group size (which can reach 50 individuals;

Reboreda and Fernández 1997) may have contributed to

the limited predictive power of the model. Despite these

limitations, the habitat model developed here is an

important first step, and although it can be improved, it

is a very good approach to understand the habitat

requirements of Greater Rheas in grassland environ-

ment at landscape scale.

In future work it may be fruitful to consider an

alternative to the bounded leaps procedure in the model

fitting stage. For analysis of small data sets methods

known to be robust to overfitting include Beiman Cutler

classifications (BCC). This bootstrap aggregation meth-

od is particularly powerful when there are many

explanatory variables (Lawrence et al. 2006).

CONSERVATION IMPLICATIONS

The majority of the study area was identified by the

model as poor quality habitat where large groups of

Greater Rhea, i.e., .15 individuals, are unlikely to

occur. Argentine grassland, like most of South Amer-

ican grassland, has experienced strong modification due

to human land use. In San Luis province, the conversion

of natural to exotic grasslands and agroecosystems is

widespread and perhaps irreversible (Demarı́a et al.

2003). Trends of expanding land use lend urgency to the

need to preserve the remaining natural habitat for

Greater Rhea and for other grassland species as well.

Our results will contribute to such conservation efforts

by clarifying important predictors of Greater Rhea

habitat quality and through spatial explicit depiction of

the distribution of high-quality habitat. The use of

texture variables derived from satellite images is an

important component in studies of habitat because it

captures spatial heterogeneity within a given land cover

class at both broad and fine scales simultaneously. Here,

we recommend the use of texture analysis as a promising

tool in the modeling of habitat suitability. We consider

that managers can use predictive models such as those

derived here to identify areas that will support high

abundance of individuals and predict the consequences

of land use on patterns of occurrence and abundance of

wildlife species.
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Argentina.

Bellis, L. M., M. B. Martella, and J. L. Navarro. 2004a. Habitat
use by wild and captive-reared greater rheas in agricultural
landscapes. Oryx 38:304–310.

Bellis, L. M., M. B. Martella, J. L. Navarro, and P. E. Vignolo.
2004b. Home range of greater and lesser rhea in Argentina:
relevance to conservation. Biodiversity and Conservation 13:
2589–2598.

Bertonatti, C., and J. Corcuera. 2000. The state of the
environment in Argentina. Environmental situation Argenti-
na 2000. Fundación Vida Silvestre Argentina, Buenos Aires,
Argentina.

Bock, J. H., and C. E. Bock. 1992. Vegetation responses to
wildfire in native versus exotic Arizona grassland. Journal of
Vegetation Science 3:439–446.

Bruning, D. F. 1974. Social structure and reproductive
behaviour in the Greater Rhea. Living Bird 13:251–294.

Bucher, E. H., and M. Nores. 1988. Present status of birds in
steppes and savannas of northern and central Argentina.
Pages 71–79 in P. D. Gorioup, editor. Ecology and
conservation of grassland birds. International Council for
Bird Preservation Technical Publication Number 7, Cam-
bridge, UK.

Buckland, S. T., D. B. Anderson, K. P. Burnham, J. L. Laake,
D. L. Borchers, and L. Thomas. 2001. Introduction to
distance sampling. Estimating abundance of biological
populations. Oxford University Press, New York, New
York, USA.

Bullock, J. M., J. Franklin, M. J. Stevenson, J. Silvertown, S. J.
Coulson, S. J. Gregory, and R. Tofts. 2001. A plant trait
analysis of responses to grazing in a long-term experiment.
Journal of Applied Ecology 38:253–267.

Burnham, K. P., and D. R. Anderson. 2002. Model selection
and multimodel inference: a practical information-theoretic
approach. Springer, New York, New York, USA.

Caughley, G. 1974. Bias in aerial survey. Journal of Wildlife
Management 38:921–933.

Caughley, G., and A. R. E. Sinclair. 1994. Wildlife ecology and
management. Blackwell Scientific, Cambridge, Massachu-
setts, USA.

Codenotti, T. L., and F. Alvarez. 2000. Habitat use by Greater
Rheas in an agricultural area of Southern Brazil. Revista de
Etologia 2:77–84.

Demarı́a, M. R., W. J. McShea, K. Koy, and N. O. Maceira.
2003. Pampas deer conservation with respect to habitat loss
and protected area considerations in San Luis, Argentina.
Biological Conservation 115:121–130.

Dı́az-Zorita, M., G. A. Duarte, and J. H. Grove. 2002. A review
of no-till systems and soil management for sustainable crop
production in the subhumid and semiarid Pampas of
Argentina. Soil and Tillage Research 65:1–18.

Dong-Chen, H., and L. Wang. 1990. Texture unit, texture
spectrum, and texture analysis. IEEE Transactions on
Geoscience and Remote Sensing 28:509–512.

Edward, G. R., and M. J. Crawley. 1999. Herbivores, seed
banks and seedling recruitment in mesic grassland. Journal of
Applied Ecology 87:423–435.

Elith, J., et al. 2006. Novel methods improve prediction of
species’ distributions from occurrence data. Ecography 29:
129–151.

ENVI. 2004. Environment for visualizing images. Version 4.1.
Research Systems, Boulder, Colorado, USA.

Estevez, I., I. L. Andersen, and E. Nævdal. 2007. Group size,
density and social dynamics in farm animals. Applied Animal
Behaviour Science 103:185–204.

Fernández, G. J., A. F. Capurro, and J. C. Reboreda. 2003.
Effect of group size on individual and collective vigilance in
Greater Rheas. Ethology 109:413–425.

Furnival, G. M., and R. W. Wilson, Jr. 1974. Regressions by
leaps and bounds. Technometrics 16:499–511.

Gibson, L. A., B. A. Wilson, D. M. Cahill, and J. Hill. 2004.
Modeling habitat suitability of the swamp antechinus
(Antechinus minimus maritimus) in the coastal heathlands of
southern Victoria, Australia. Biological Conservation 117:
143–150.

Giordano, P. F., L. M. Bellis, J. L. Navarro, and M. B.
Martella. 2008. Abundance and spatial distribution of
Greater Rhea Rhea americana in two sites of the pampas
grasslands with different land use. Bird Conservation
International 18:63–70.

Gottschalk, T. K., F. Huettmann, and M. Ehlers. 2005. Thirty
years of analyzing and modeling avian habitat relationships
using satellite imagery data: a review. International Journal
of Remote Sensing 26:2631–2656.

Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat
distribution models in ecology. Ecological Modeling 135:
147–186.

Guo, X., K. P. Price, and J. M. Stiles. 2000. Biophysical and
spectral characteristics of three land management practices
on cool and warm season grasslands in eastern Kansas.
Natural Resources Research 9:321–331.

Guo, X., J. Wimshurst, S. McCanny, P. Fargey, and P.
Richard. 2004. Measuring spatial and vertical heterogeneity
of grassland using remote sensing techniques. Journal of
Environmental Informatics 3:24–32.

Haralick, R. M., K. Shanmugan, and I. Dinstein. 1973.
Textural features for image classification. IEEE Transactions
on System, Man, and Cybernetics SMC-3:610–621.

Hayes, G. E., and K. D. Holl. 2003. Cattle grazing impacts on
annual forbs and vegetation composition of mesic grasslands
in California. Conservation Biology 17:1694–1702.

Hepinstall, J. A., and S. A. Sader. 1997. Using Bayesian
statistics, Thematic Mapper satellite imagery, and breeding
bird data to model bird species probability of occurrence in
Maine. Photogrammetic Engineering and Remote Sensing
63:1231–1237.

Herrera, L. P., V. M. Comparatore, and P. Laterra. 2004.
Habitat relations of Rhea americana in an agroecosystem of
Buenos Aires Province, Argentina. Biological Conservation
119:363–369.

Hurvich, C. M., and C. L. Tsai. 1989. Regression and time
series model selection in small samples. Biometrika 76:297–
307.

IUCN (International Union for Conservation of Nature and
Natural Resources). 2007. IUCN red list of threatened
species. hwww.iucnredlist.orgi

Kinucan, R. J., and F. E. Smeins. 1992. Soil seed bank of a
semiarid Texas grassland under three long-term (36-years)
grazing regimes. American Midland Naturalist 128:11–21.

Knick, S. T., and J. T. Rotenberry. 2000. Ghosts of habitats
past: contribution of landscape change to current habitats
used by shrubland birds. Ecology 81:220–227.

Lawrence, R. L., and W. J. Ripley. 1998. Comparisons among
vegetation indices and band wise regression in a highly
disturbed, heterogeneous landscape: Mount St. Helens,
Washington. Remote Sensing of Environment 64:91–102.

Lawrence, R. L., S. D. Wood, and R. L. Sheley. 2006. Mapping
invasive plants using hyperspectral imagery and Breiman
Cutler classifications (RandomForest). Remote Sensing of
Environment 100:356–362.

Laymon, S. A., and S. H. Barrett. 1986. Developing and testing
habitat-capability models: pitfalls and recommendations.
Pages 87–92 in J. Verner, M. L. Morrison, and C. J. Ralph,
editors. Wildlife 2000. Modeling habitat relationships in
terrestrial vertebrates. University of Wisconsin Press, Mad-
ison, Wisconsin, USA.

Legendre, P., M. R. T. Dale, M. J. Fortin, J. Gurevitch, M.
Hohn, and D. Myers. 2002. The consequences of spatial
structure for the design and analysis of ecological field
surveys. Ecography 25:601–615.

December 2008 1965IMAGE TEXTURE IN RHEA HABITAT MODELS



León, R. J. C., G. M. Rusch, and M. Oesterheld. 1984.
Pastizales pampeanos: impacto agropecuario. Phytocoenolo-
gia 12:201–218.

Luck, G. W. 2002. The habitat requirements of the rufous
treecreeper (Climacteris rufa). 2. Validating predictive habitat
models. Biological Conservation 105:395–403.

Luoto, M., M. Kuussaari, and T. Toivonen. 2002. Modelling
butterfly distribution based on remote sensing data. Journal
of Biogeography 29:1027–1037.

Luoto, M., R. Virkkala, R. Heikkinen, and K. Rainio. 2004.
Predicting bird species richness using remote sensing in
boreal agricultural-forest mosaic. Ecological Applications 14:
1946–1962.

MacArthur, R. H., and J. W. MacArthur. 1961. On bird species
diversity. Ecology 42:594–598.

Martella, M. B., and J. L. Navarro. 2006. Proyecto Ñandú.
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Yagueddú, C., and E. Viviani Rossi. 1985. Botanical compo-
sition of Greater Rhea (Rhea americana albescens) diet in a
grassland of Buenos Aires pampas. Resúmenes del XI
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