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The political breakdown of the Soviet Union in 1991 provides a rare case of drastic changes in social and econom-

ic conditions, and as such a great opportunity to investigate the impacts of socioeconomic changes on the rates

and patterns of forest harvest and regrowth. Our goal was to characterize forest-cover changes in the temperate

zone of European Russia between 1985 and 2010 in 5-year increments using a stratified random sample of 12

Landsat footprints. We used Support Vector Machines and post-classification comparison to monitor forest

area, disturbance and reforestation.Where image availabilitywas sub-optimal, we testedwhetherwinter images

help to improve classification accuracy. Our approach yielded accurate mono-temporal maps (on average >95%

overall accuracy), and change maps (on average 93.5%). The additional use of winter imagery improved classifi-

cation accuracy by about 2%. Our results suggest that Russia's temperate forests underwent substantial changes

during the observedperiod. Overall, forested areas increased by 4.5%, but the changes in forested area varied over

time: a decline in forest area between 1990 and 1995 (−1%)was followed by an increase in overall forest area in

recent years (+1.4%, 2005–2010), possibly caused in part by forest regrowth on abandoned farmlands. Distur-

bances varied greatly among administrative regions, suggesting that differences in socioeconomic conditions

strongly influence disturbance rates. While portions of Russia's temperate forests experienced high disturbance

rates, overall forest area is expanding. Our use of a stratified random sample of Landsat footprints, and of summer

and winter images, allowed us to characterize forest dynamics across a large region over a long time period,

emphasizing the value of winter imagery in the free Landsat archives, especially for study areas where data

availability is limited.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Land-cover and land-use-change (LCLUC) is one of the most im-

portant components of global environmental change (Foley et al.,

2005). Among the different land cover classes, changes in forests

are particularly important because of their ability to sequester atmo-

spheric carbon sequestration and their potential to help mitigating

climate change (Bonan, 2008; FAO, 2010). Remote sensing has played

a key role in monitoring forest change at multiple scales and in differ-

ent regions of the world (Hansen et al., 2008; Kennedy et al., 2011;

Potapov et al., 2011).

LCLUC is often linked to socio-economic changes, leading to concep-

tual models that describe LCLUC as a function of a country's economic

development (e.g., Foley et al., 2005; Lambin et al., 2003). However,

these conceptual models usually assume relatively continuous develop-

ment of political and economic conditions, and it is less clear how dras-

tic and rapid changes in political and economic decisions affect land use.

A prime example of a drastic change is the collapse of the Soviet Union

in 1991. The switch from a state-controlled economy towards an open

market system, and the institutional transformation in Russia resulted

in major changes in forest legislation, and the privatization of both the

timber industry (Turnock, 1998;Wendland et al., 2011) and the agricul-

tural sector, which had substantial influences on agricultural intensity

(Lerman, 2009; Prishchepov et al., in review).

Forest cover changedmarkedly inmany parts of Eastern Europe after

the collapse of the Soviet Union, and remote sensing has played a key

role in mapping these changes. For example, analyses of Landsat The-

matic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data

in the Carpathians revealed that the transition period after the break-

down of the Soviet Union was partially characterized by widespread

forest harvests (Griffiths et al., 2012; Knorn et al., 2012; Main-Knorn et

al., 2009), including illegal logging (Kuemmerle et al., 2009). In European
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Russia's boreal forest, harvesting rates were about 1.5% between 2000

and 2005 according to a wall-to-wall analysis of Landsat data (Potapov

et al., 2011). In addition to Landsat based studies, European Russia was

also part of studies that investigated global forest-cover changes using

the Moderate Resolution Imaging Spectroradiometer (MODIS) (Hansen

et al., 2010; Potapov et al., 2008). However, past studies either focused

on a large area over a short and recent time period, or they analyzed

long-term change, but were geographically limited to a smaller study

area. What is lacking is a study of the temperate forests of European

Russia that analyzes a long time series in the entire region.

One reason that such a study has not been undertaken previously

is the quality and volume of data that is needed, in both the spatial

and temporal domain. While MODIS imagery provides very frequent

information for large areas, these observations are made at moderate

spatial resolution (250 to 500 m), which limits their utility for small

scale landscape changes. Moreover, since MODIS only started record-

ing the Earth's surface in 2000, the timeframe of available data is too

short to analyze forest-cover changes during the last years of social-

ism and the early post-socialist period. On the other hand, Landsat

sensors (especially TM and ETM+) provide high-resolution data

(30 m) that are available continuously from 1984 to the present,

which makes them ideal for addressing questions of post-Socialist

forest-cover change. However, Landsat sensors' relatively narrow

swath width (approximately 185 km) makes Landsat data more chal-

lenging to use wall-to-wall across large areas. The lower temporal

repeat cycle (16 days, 8 days when considering the overlap areas to

neighboring footprints in higher latitudes) as one consequence of

the narrow swath width and frequent obstructions by clouds lead in

some regions of the world to a maximum of 1–2 suitable images per

growing season at best, making wall-to-wall-coverage across large

areas impossible. An alternative approach for describing forest dy-

namics across a larger region is to statistically sample a subset of

Landsat footprints, greatly reducing the amount of data needed.

Such an approach has been used for the United States as part of the

North American Forest Dynamics (NAFD) project (Goward et al.,

2008) in which 23 footprints were selected and analyzed using

Landsat Time Series Stacks (LTSS; Huang et al., 2009a). Similarly, ag-

ricultural expansion on expense of intact forests has been investigat-

ed in the tropics (Gibbs et al., 2010). Achard et al. (2002) studied the

world's humid tropical forests in the TREES-2 project using a sample

of overall 100 Landsat scenes (quarters and full scenes). These scenes

were selected using a deforestation risk map, which had been created

previously based on expert knowledge, and considered higher sam-

pling probabilities in deforestation hot spot areas. The FAO Forest Re-

sources Assessment 1990 used a stratified sample of 117 Landsat TM

scenes in the tropics containing at least 10,000 km2 land surface

(FAO, 1996) to assess forest cover. For an analysis of the European

Union using a sample of Landsat TM scenes, Gallego (2005) selected

his sample based on Thiessen polygons and a stratification process.

Stehman (2005) generally showed that focusing on a sample rather

than on the entire population yields better estimates, when the im-

provement of error during the analysis of the sample outweighs the

introduction of the sampling error. As such, in the present study, we

focused on a sample of Landsat footprints rather than on a wall-to-

wall coverage.

Our study also focuses on capturing local and regional forest-cover

changes which, we assume, vary across the entire region. Caused by

the low data availability that did not allow us to cover the region

wall-to-wall for our entire time period of interest, we used a stratified

random sample and selected 12 Landsat footprints across the temper-

ate zone of European Russia.

While the use of a statistical sample reduces the number of foot-

prints necessary to study, it does not completely eliminate the prob-

lem that cloud-free imagery during the growing season is often

limited. Leaf-off imagery in spring and fall can result in classification

errors between deciduous trees and non-forested vegetation classes

(Reese et al., 2002). We hypothesized that the additional use of awinter

image can help overcome this issue, especially for the accurate delinea-

tion of forest boundaries. Landsat imagery from the winter season can

be useful because of the strong radiance contrast in these areas during

the winter (Liira et al., 2006; Peterson et al., 2004). Grasslands and

open spaces are completely covered with snow during the winter, lead-

ing to high visible reflectance while deciduous and needle leaf forests

have a lower reflectance due to branches and shadows. In other words,

adding a second image from the winter period of the same year may

possibly increase the overall accuracy of the classification by helping to

distinguish grass areas fromdeciduous forests. The use ofwinter imagery

has been successfully shown in the past: their addidional use led to an

accuracy of 89% for quantification of bamboo understory growth in a

mixed forest area (Wang et al., 2009). Winter imagery use was also

reported providing an alternative to hyperspectral data for mapping for-

est wildlife habitat in the central and southern Appalachians (Tirpak &

Giuliano, 2010). In the most recent study, Stueve et al. (2011) tested

snow-covered Landsat imagery in North America and found that they re-

duce commission errors of disturbance areas by nearly 28%. Based on

these prior findings, we decided to investigate if winter imagery can

also improve forest/non-forest-classifications in the temperate region

of Russia.

Another shortcoming of most prior studies in European Russia is that

they examined only permanent forests and forest disturbances, while

ignoring forest recovery (defined here as forest regeneration on distur-

bance sites, as well as forest expansion onto land that was not forested

at the beginning of the Landsat record). Rates of forest recovery are of

paramount importance for studies of carbon sequestration both above

ground (Böttcher et al., 2008; Houghton, 2005) and in the soil (Guo &

Gifford, 2002). Forest recovery is particularly important in the former So-

viet Union and Eastern Europe (Vuichard et al., 2008). For example,

widespread farmland abandonment (as documented by Baumann et

al., 2011; Kuemmerle et al., 2008; Prishchepov et al., in review) suggests

that large areas of former farmland are reverting to forests, which creates

a large carbon storage potential (Kuemmerle et al., 2011; Olofsson et al.,

2011). However, the extent and the intensity of forest recovery in the

temperate zone of European Russia are not well known.

The overarching goal of our study was therefore to characterize re-

gional differences of post-socialist forest-cover changes in the tem-

perate region of European Russia using a representative sample of

Landsat footprints. More specifically, our objectives were to:

• quantify the changes in forested areas in 5-year-increments from

1985 to 2010 across a stratified random sample of 12 Landsat

footprints,

• determine forest recovery rates in these footprints before and after

the collapse of the Soviet Union and compare these patterns with

those in other eastern European countries, and

• test whether the inclusion of a winter image increases classification

accuracy.

2. Study area

Our study region included three Russian federal districts, 27 federal

districts (hereafter: ‘regions’), which are subdivided into 821municipal

districts (Fig. 1). The two largest cities of European Russia, St. Petersburg

and Moscow, were located in our study region. Russia contains 20% of

the world's forests (about 809 million ha; FAO, 2010), and in the tem-

perate region, temperate coniferous, broadleaf, and mixed forests dom-

inate the landscape.

European Russia's forest sector and forest legislation underwent

several substantial changes since 1991, including privatization of the

timber industry, and changing decentralizations and re-centralizations

of the forest administration between federal, local and regional

administrators (Eikeland et al., 2004; Wendland et al., 2011). Based

on the 1993 Principles of Forest Legislation, forest management and
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administration were decentralized to local forest administrators, giving

them responsibility for forestmanagement activities, including sanitary

cuts, thinning, and reforestation. Concurrent privatization of logging en-

terprises and wood processing centers did not stop highly inefficent

wood utilization and poormanagement of forest areas that was present

during Soviet times (Krott et al., 2000). In 1997, Russia issued its first

forest code, which recentralized the decision making authority first to

the regional level, and later to the federal level, and one aim was to stop

illegal harvesting activities (Torniainen et al., 2006). In the latest version

of the Forest Code, Russia again decentralized decision-making to the re-

gional level, while at the same time designating responsibilities for forest

resource use to private timber firms (Torniainen & Saastamoinen, 2007).

Similar to the forest sector, the agricultural sector underwent substan-

tial changes after 1991. The introduction of a market-driven economy

resulted in the end of most agricultural subsidies. Together with rural

population decline wide areas of agricultural land were abandoned

(Lerman, 2009), many of which are now reverting back to forests

(Prishchepov et al., in review).

3. Data and methods

3.1. Data and pre-processing

Weused a stratified random sample of 12 Landsat footprints thatwe

were confident of being able to represent the variability of forest areas

and forest-area changes across the temperate region of European Rus-

sia. To select a representative samplewe stratified our study area by for-

est cover, and selected a random sample of footprints from each

stratum. We stratified the Landsat footprints by forest cover using the

2005 MODIS vegetation continuous field (VCF; Hansen et al., 2006), to

ensure that our sample contained areas of higher and lower proportion

of forest cover in the landscape. Our interest was to analyze the differ-

ences among administrative regions and these differences affect

forest-cover patterns. Thus we calculated the mean value of the mean

tree canopy cover for each administrative region, and divided the re-

gions into five forest cover categories of approximately even size. We

then attached the Landsat footprints that overlaps each region and ran-

domly selected two footprints from each category and one additional

footprint from the two categories with the highest forest cover. With

this method, a Landsat footprint always contained the information of

the administrative region it overlaps with most (Fig. 1). This way we

were able to capture the variability of forest cover within the study re-

gion with extra attention given to forested areas. This gave a total sam-

ple size of 12 Landsat footprints. For each footprint we selected six

images, representing 5-year-intervals from 1985 to 2010. We used

data from the Landsat sensors TM4 and TM5 as well as from Landsat

ETM+ prior to May 2003. We avoided using ETM+ imagery for the

time periods after May 2003 because of the scanline corrector (SLC)

data gap issue. We selected images that (a) had no or very low cloud

contamination, (b) were recorded during the growing season, and

(c) were closest to the year of interest (i.e., 1985, 1990, 1995 etc.). 71

out of 76 images were acquired from the United States Geological Sur-

vey (USGS, 2006) in terrain-corrected quality (L1T) and the remaining

images were co-registered to these images using automated tie-point

collection (Kuemmerle et al., 2006). We included the Space Shuttle

Topography Mission (SRTM) digital elevation model (resampled to

30 m) in the co-registration process to account for relief displacement.

The average positional error of the co-registered images was less than

0.20 pixel (or less than 6 m). Some images showed contamination by

clouds, which were digitized and masked.

3.2. Training and image classification

The task of classifying 72 Landsat scenes (12 footprints with six

time steps each) necessitated that we used a training strategy to min-

imize the overall training effort while maximizing classification accu-

racy. To do this, we first classified the 2010 image of every footprint

using the Iterative Self Organizing Data Analysis Technique (ISO-

DATA) unsupervised classification algorithm into 40 classes and la-

beled each class either as ‘forest’ or ‘other land cover’. Within both

‘forest’, and ‘other land cover’we randomly sampled 1000 points, en-

suring a minimum distance of 2000 m between points to minimize

spatial auto-correlation. We then labeled each point as either ‘forest’

or ‘other land cover’. Points were considered ‘forest’, if they covered

at least one Landsat pixel (30×30m) and their tree cover exceeded

60%, corresponding to the category of ‘closed tree cover’ in the Land

Fig. 1. The temperate zone of European Russia with its administrative deviation, and the Landsat footprints, selected for classification.
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Cover Classification system by Di Gregorio (2005). This means that

our forest definition included orchards, but not single trees, rows of

tree or open shrublands. Our criteria of 60% canopy cover was also

more restrictive than the FAO definition where forest is “land with

tree crown cover (or equivalent stocking level) of more than 10%

and an area of more than 0.5 hectares (ha)” (FAO, 2010).

To reduce the size of training data, we only considered points that

had constant land cover over the entire time period. In other words,

rather than labeling training points for each image of a given footprint

separately, we analyzed all six images of a footprint simultaneously

and considered only points that were consistently characterized as

‘forest’ or ‘other land cover’ in all six images (Kuemmerle et al.,

2009). We based our decision for each point on the visual interpreta-

tion of the Landsat imagery and high resolution Quickbird imagery

from Google Earth™. The Quickbird images were only used for confir-

mation and validation purposes as they were not available for the en-

tire area and their image acquisition varied across our sample. Yet,

they also provided useful information when a point was not directly

covered by high resolution imagery, because in most cases in the

neighborhood of the points high resolution coverage was available

and the signature in the Landsat imagery was the same as at the actu-

al point location. This increased the confidence of our labeling deci-

sion for each point as it was made based on the best information

available. The ‘consistency requirement’ of our training data dictated

that recovering forests be excluded, because no confident decision

could be made to determine in every case that the land cover label

satisfied our requirement of tree cover exceeding 60%. This strong

conservative rule set for each point enabled us to generate one train-

ing dataset, which was applicable for each image within a footprint,

greatly reducing the time for gathering the training data. At the

same time, the pre-stratification using the ISODATA caused that de-

spite these set of rules we had greater than1750 points on average

per footprint available for classification and validation.

We used Support VectorMachines (SVM) to classify our images. SVM

fit a linear hyperplane between two classes in a multi-dimensional fea-

ture space (Foody &Mathur, 2004a) bymaximizing themargin between

training samples of opposite classes. In the case of two non-linearly sep-

arable classes, SVMuse kernel functions to transform training data into a

higher dimensional feature space where linear separation is possible

(Huang et al., 2002). The exclusive focus on pixels at the class boundaries

(Foody&Mathur, 2004b, 2006), and the ability to handle non-linear sep-

aration boundaries, makes SVM very efficient in handling complex class

distributions (Huang et al., 2002; Pal & Mather, 2005).

In the first step we parameterized a SVM-model using our training

dataset and selected as a kernel function a Gaussian radial basis func-

tion. This function requires setting two parameters, which are train-

ing data dependent and hard to estimate a-priori: γ, describing the

kernel width, and the regularization parameter C, that controls the

trade-off between maximizing the margin and training error (Pal &

Mather, 2005). While small C-values tend to ignore outliers, large

C-values may lead to overfitted SVMmodels depending on the variability

of the training samples. To find the best γ–C-combination, we tested a

wide range of combinations of these parameters and compared allmodels

using cross-validation (Janz et al., 2007; Kuemmerle et al., 2008).We then

selected the best performing model and classified each of the 72 Landsat

TM/ETM+ images using the six reflective spectral bands and retrieved

forest/non-forest maps for each of the six time steps. The changes be-

tween these time-steps were finally assessed using post-classification

map comparison (Fig. 6; Coppin et al., 2004).

Following image classification, we performed an accuracy assess-

ment in three steps. In the first step, we assessed the accuracies for

each classification individually. To do this we split our ground truth

points into classification and validation points (90% and 10% of the

overall points, respectively). Using the validation sample, we then

assessed the accuracy of the classification, calculated the error matrix,

and derived overall accuracy, user's and producer's accuracy, and the

kappa statistic (Congalton, 1991; Foody, 2002). Additionally we cal-

culated the F-measure that characterizes the overall classification ac-

curacy by calculating weighted mean values of user's and producer's

accuracy (van Rijsbergen, 1979). For each image, we parameterized

ten SVM using different combinations of training and validation

points and averaged the resulting accuracy measures to derive robust

accuracy estimates for each classification (Steele, 2005). The final

image classification then was carried out using all ground truth points

of our sample, rendering the accuracy measures conservative esti-

mates (Burman, 1989). We also corrected our accuracy measures for

possible sampling bias (Card, 1982) and calculated confidence inter-

vals around the area estimates (Stehman, 2012).

In the second step we assessed the accuracy for a subset of our

change maps. To do this, we randomly selected six out of the 60

change maps. For each of these change maps we converted the

raster-map into polygons. As a reference, we created an image stack

of the two reference images (e.g., the 1985 and the 1990 image for

a 1985–1990 change map) and segmented the stack using a nested

hierarchical scene model segmentation approach (Woodcock &

Harward, 1992). We then randomly selected 100 polygons of at

least 1 ha size (equaling 12 pixels) for each class in the change map

and compared it with the segments in the original images. We

assigned a validation polygon to the class (constant forest, constant

other, forest disturbance, forest recovery) based on visual interpreta-

tion of how the majority of the pixels in the polygon developed over

time. For each class, we then calculated the same accuracy measures

as for the single classifications.

Finally, we compared our classifications for the years 2000 and

2005 with a Landsat classification of the same region, made available

by Potapov et al. (2011). This dataset is a wall-to-wall coverage of our

study region in 60 m resolution. To compare the two classification

results, we sampled for every footprint 100 points into each of our

two classes and compared the outcome with the classifications by

Potapov et al. to derive a measure of agreement.

Some of our initial forest/non-forest classifications were unsatis-

factory, mainly when image acquisition dates were either early (e.g.,

late April/early May) or late (mid to end of October) in the growing

season. Detailed analyses of these classifications suggested that

most of the classification errors were caused by the confusion be-

tween deciduous forest and grassland. We hypothesized that the ad-

dition of a second image from the winter season might increase the

classification accuracy. We therefore added a winter-season image

to the analysis and reran our classifications. We compared the classi-

fication results and accuracies of the single image classification with

the 2-image stack results, and used the better classification for our

analysis. After classifying each image, we applied a majority filter

using a minimum mapping unit of 0.5 ha (approximately 6 pixels in

a Landsat classification) to remove the salt-and-pepper effect that is

typical in raster-based image classifications, but at the same time

not omitting smaller scale disturbances.

3.3. Analysis of forest-cover change

To understand how forest cover changed in the temperate region,

we analyzed our forest maps in two ways. First, we summarized areas

of ‘forest’ for each footprint separately at each time step, and calculat-

ed changes in forested areas. To account for our uneven sample,

which had a higher sampling density in the more forested regions,

we weighted the percentages of change by the number of footprints

within each stratum to obtain an accurate measure of forest-area

change across the study region.

Second, we analyzed forest-cover changes at the district level. We

calculated the relative net change (RNC) of forest cover throughout

the entire period following Kuemmerle et al. (2009) as:

RNC ¼ FC2010=FC1985–1ð Þ " 100 ð1Þ
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with FC as forest cover in km2 of the described time period. Also at the

district level we calculated annual disturbance rates DR for each time

period as:

DRj ¼ Dj=FCBj

� �

" 100=a ð2Þ

where D is the overall area of the disturbed forest during the analyzed

time period j, FCB is the forest cover at the beginning of the same time

period, and a is the number of years between acquisitions, since our

acquisition intervals were not equal across footprints (Table 1).

Finally, we calculated proportion of forest area gain per time peri-

od FGj as:

FGj ¼ Rj=NF1985

� �

" 100 ð3Þ

with R as the area not being forested in 1985 but forested in time pe-

riod j and NF1985 is all non-forested area in 1985 (Kuemmerle et al.,

2009).

4. Results

Our 72 SVM classifications yielded highly accurate forest/non-forest

maps for all footprints across all time periods, with an average accuracy

of 95.80% (standard deviation 1.51%, maximum 98.28%, minimum

91.16%) and kappa of 0.96 (0.01, 0.98, 0.91; Table 1). The six selected

change maps had an average accuracy of 93.52% (standard deviation

1.32%, maximum 94.47%, minimum 90.96%; Table 2) and a kappa of

0.93 (0.01, 0.94, 0.91). The best classes in the change maps were the

persistent classes (forest and other land cover), whereas the change

classes had moderately lower accuracies (Table 2). Compared to the

classifications by Potapov et al. (2011) we found an agreement of 90%

between the two classifications.

Our classifications revealed that in 2010 45.53% of the investigated

area was forested (Fig. 2). The amount of forested areas varied across

our study region. The regions with the most forest in 2010 were

Kostroma (path/row 175/019; 21,541 km2, 78.4% of the classified

area), Novgorod (path/row 183/019; 18,223 km2, 64.5% of the classi-

fied area), and Vladimir (path/row 176/021; 15,863 km2, 54.3% of the

classified area). The regions with the least forest in 2010 were

Tambov (path/row 174/024; 2962 km2, 10.4% of the classified area)

and Uljanovsk (path/row 171/022; 6634 km2, 23.3% of the classified

area).

Forest area changed substantially in our study region through the ob-

served period (Fig. 3). Across all 12 footprints, we found a net forest

cover increase of 7492 km2, which corresponds to a weighted increase

of 4.5% between 1985 and 2010. The regionswith the largest net increase

between 1985 and 2010 were Smolensk (551.85 km2, 9.7%, path/row

181/022) and Kostroma (2257 km2, 12.3%, path/row 175/019). Other re-

gions only experienced a moderate net forest cover increase, such as

Novgorod (647 km2, 3.6%, path/row 183/019) or Kirov (943.43 km2,

6.5%, path/row172/020). In some regionswe found a net forest cover de-

crease between 1985 and 2010, yet the net decreases were smaller than

the largest net increases. For example, Uljanowsk (path/row 171/022)

andBashkortostan (path/row16622) experiencedminor decrease in for-

est area (−215 km2/−3.1% and −245 km2/−2.8%). The strongest net

forest loss occurred in Tambov (path/row 174/024) with a loss of

455 km2 (−12.2%).

Changes in forest area also varied across regions during the ob-

served time period. For example, for 6 out of the 12 covered regions

(Bashkortostan, Perm, Udmurtia, Uljanowsk, Vladimir, Smolensk)

we found a net forest area decrease during the early post-Socialist

years (period 1990–1995/2000), but a subsequent net increase in for-

est area. In some regions the net forest area change was strong

enough to exceed Socialist forest area (e.g., Vladimir region with an

overall gain of 8.1%). Yet, other regions had less forest now than dur-

ing Soviet times (e.g., Uljanovsk, net loss of −1.3%). Regions that did

not lose forest during 1990–1995/2000 either showed minor increase

(e.g., Yaroslav, Tambov or Kirov region) or no significant change in

forest area (e.g., Kostroma region). For most of the regions within

our stratified random sample, we found a net increase of forest

cover either over the last 10 years (strongest increase in the regions

Vladimir (11.3%), Bryansk (7.1%), Kirov (6.9%)) or over the last

5 years (strongest increase in the regions Yaroslav (3.8%), Uljanovsk

5.1%, Fig. 3).

Rates of RNC, disturbance and forest recovery varied substantially

over time at the regional level (Fig. 4). We found the strongest variation

in Bashkortosan (Landsat path/row 166022) during the period 1985–

1990 with a standard deviation of 9.42% (max 12.54%, min 2.62%), the

lowest within-region variation was 0.10% (0.45%, 0.00%) in Smolensk

(path/row 181022). Of all the districts, the highest disturbance rate oc-

curred in a district in Uljanovsk (14.44% period 1985–1990), followed

by a district in Kirov (13.11% period 1990–1995), and then Bashkortosan

Fig. 2. Area estimates, summarized and averaged across all 12 footprints. The top diagram indicates the overall area at each time step in km2, including the absolute areas of forest

disturbance and forest recovery. The bottom diagram shows the net change of forested areas in km2 to the previous time-step.

178 M. Baumann et al. / Remote Sensing of Environment 124 (2012) 174–184



Author's personal copy

(19.54% period 1985–1990). On the other hand, there were also districts

with essentially no disturbance (e.g., in Novgorod 1985–1990, Bryansk

179023, and Uljanovsk 2000–2005). Within-region variation (i.e., differ-

ent disturbance rates among districts within one region) changed over

time in some regions. The highest changes over time occurred in

Bashkortosan (standard deviations of 9.42%, 1.26%, 0.80%, 3.94%, 1.73%

for the 5 change periods), Vladimir (2.70%, 0.85%, 2.48%, 0.87%, 4.30%),

and Kirov (3.04%, 3.20%, 7.07%, 0.92%, 5.26%). The variations within all

other regions did not change as strongly over time.

Variations at the district level were also observed for the relative

net forest area change. For example, in Bryansk, some districts in-

creased by up to 35.20% in forest area, whereas for other districts de-

creased by up to−21.31%. In Kostroma all districts gained forest area

(max 23.38%, min 1.51%). All other regions contained both districts

that gained and districts that lost forest area (Fig. 4).

When acquisition dates were suboptimal, adding a winter image

reduced the classification errors in average from 4.38% to 2.50%. On

average, the overall classification accuracy (OCA) increased by 1.95%

(standard deviation 1.81%), kappa by 0.04 (0.04) and the F-Measure

by 1.97% (1.83%; Fig. 5). We found the strongest improvement for

1990 in Landsat footprint 179/023 (increase in overall classification ac-

curacy=4.08%, Δ kappa=0.08, Δ F-Measure=4.13%), and the least

improvement in 2000 in footprint 179/023 (increase in overall classifi-

cation accuracy=0.22%, Δ kappa=0.004, Δ F-Measure=0.23%; Fig. 5).

5. Discussion

Widespread land-use changes have been reported for multiple re-

gions in Eastern Europe for the time period during and after the col-

lapse of the Soviet Union. (Kuemmerle et al., 2011; Wendland et al.,

Fig. 3. Forest area estimates for each footprint. The top diagram indicates the overall area at each time step in km2, including the absolute areas of forest disturbance and forest

recovery. The bottom diagram shows the net change of forested areas in km2 to the previous time-step.
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2011). Using a representative subset of 12 Landsat footprints our goal

was to analyze regional differences of forest-area changes in the temper-

ate zone of European Russia during and after the collapse of the Soviet

Union. The analysis revealed that across our sample forest area initially

declined after 1991, but then increased, resulting in a net increase by

2010 of about 6.2%more forest area compared to 1985. However, within

our sample, forest-area changes varied substantially over time at both

the regional and the district level, sometimes with opposite trends in

forest area; suggesting that sub-national differences strongly affect forest

cover.

Across samples across the study region, forest cover decreased dur-

ing the early post-socialist years. Thisfindingmatched our expectations,

Fig. 4. Rates of forest disturbance and forest recovery per time period (left and middle columns), and relative net change (RNC) of forested area over the entire observation period,

aggregated at the district level.

Fig. 5. Difference in classification accuracies after adding a winter-image when image acquisition was sub-optimal.
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since other Eastern European studies suggested similar patterns of

forest-cover changes after 1991 (Griffiths et al., 2012; Kuemmerle et al.

2007). Surprising, however, was the strong forest-area increase after

2000, and especially after 2005. This forest area increase is most likely

a consequence of forest recovery on former disturbed forest areas and

a second major land-use change in this region, farmland abandonment.

Vast areas of farmlandwere abandoned after 1991, following the decline

in subsidization, rural outmigration, and ownership changes (Lerman,

2009; Mathijs & Swinnen, 1998), and many of these former fields are

now covered by shrubs and early successional forests or entirely rep-

laced by planted forests (Prishchepov et al., in review). Furthermore,

field visits suggest that evenmore areas of abandoned farmlandmay re-

vert to forests in the future, since many abandoned fields exhibit woody

vegetation.

The high rates of disturbances and forest recovery in some dis-

tricts may be overestimations, given that our commission errors for

these classes in the change maps are relatively high (Table 3).

We found substantial regional and district differences in forest-cover

changes over time at the level of single Landsat footprints. For example,

our sample includes regions with little or no changes (e.g., Yaroslav) and

regions with substantial changes (e.g., Smolensk) in forest cover be-

tween 1985 and 2010 including different spatial-temporal pattern. At

the same time we found strong within-region variations (i.e., strong

differences at the district levelwithin a region) and very homogenous re-

gions and their forest cover. How canwe explain these diverse patterns?

Assumingly they are a result of the interaction of several factors that in-

volve changing harvesting practices following changing socio-economic

and administrative conditions as well as natural forest disturbance

such as fires or windfall. From a socio-economic perspective we see the

collapse of the Soviet Union as themain driverwhich led to decentraliza-

tion of the forest administration from federal to regional levels following

the Principles of Forest Legislation in 1993 and changes in the relative

costs and benefits of timber harvesting in these regions (Wendland et

al., 2011). The partial autonomy of regions to administer their forests

might have led to different strategies of forest management and, possi-

bly, to illegal harvesting at different levels in some regions (Torniainen

& Saastamoinen, 2007). The change in relative costs and benefits of tim-

ber harvestingwould have influencedwhere timber harvesting occurred

following privatization of the timber industry and changes in the overall

economic conditions in Russia. As the other main driver for our forest

pattern we emphasize the importance of natural disturbances, such as

windfall and fires. Our results suggest different rates and patterns of

change compared to official statistics. These statistics report, for example,

a drop in harvesting rates between 1988 and 1993. For this divergence

we see the different types of assessments being the main reason. More

specifically, while in our study we mapped forest cover using remote

sensing, assessed change rates using post-classification comparison and

summarized them under ‘disturbance rates’, the official statistics exclu-

sively recorded forest harvests on administrative levels and calculated

‘harvesting rates’. In other words, our study included all types of distur-

bance, whereas the harvesting statistics contain harvests only. Given

that fires can cause large declines in forest areas, are usually highly var-

iable in time and space, and are present in Russian forests, this could po-

tentially have caused the differences in the rates and patterns of our

study compared to rates of official statistics.

Methodologically, our approach showed that analyzing a stratified

random sample of Landsat footprints across a large study region is

powerful in highlighting regional differences of forest-cover changes

Our stratification based on the MODIS VCF product enabled us to cap-

ture the entire range of variability of forest cover which revealed

being important for highlighting the regional differences. Our ap-

proach is thus particularly well suited to situations, where the main

goal is to analyze and highlight spatial-temporal variability of forest

area across a larger study area when at the same time data availability

does not allow for complete coverage.

Similarly, our approach of post-classification map comparison of six

binary forest/non-forest maps yielded accurate change maps. Our ap-

proach of gathering training data that did not change over time reduced

the amount of overall training data for the classification, and hence the

time needed to gather these data. This made it possible to perform a

long-term analysis with multiple time steps as a series of bi-temporal

post-classification comparisons. Hence, our approach may be viewed

as a good compromise between traditional bi-temporal change detec-

tion methods (Coppin et al., 2004) and more recent trajectory based

land-cover change approaches (Kennedy et al., 2011) which require

more frequent data than what may be available in many places

(Prishchepov et al., in review).

The use of winter imagery increased classification accuracy when

available image dates were sub-optimal. Stueve et al. (2011) tested

winter imagery and found that their use decreased commission errors,

Fig. 6. Forest-cover change map for footprint 176021 (Vladimir region) for 1985–2010.

181M. Baumann et al. / Remote Sensing of Environment 124 (2012) 174–184



Author's personal copy

leading overall to more accurate classifications. Our results confirmed

this. In all cases classification accuracies improved, and in some cases

quite substantially so. Despite our already high classification accuracies,

we were able to reduce the classification error by over 50% in relative

terms. However, our tests were limited to three footprints and only to

lower elevation areas (path/row 169/020: mean elevation of 167 m,

range between 65 m and 332 m; 179/023: 200 m, 118–287 m; 167/

020: 188 m, 60–461 m). We therefore recommend that more detailed

studies be conducted in other forest types. Nevertheless, our results

are promising, considering that the Landsat archives contain large

amounts of winter imagery that have rarely been used for forest classi-

fications in the past.

Our classification results are in strong agreement with the maps

developed by Potapov et al. The small difference in agreement is like-

ly a result of the different resolutions of the two data products (30 m

in our classification vs. 60 m from Potapov et al.) as well the strategy

of generating the training data (manually in our case, completely au-

tomated by Potapov et al.)

Despite the high single-map accuracies and the improvement

using winter images, some classification errors remained. First, the

application of our majority filter may have omitted smaller distur-

bances and re-growth. Yet, we were able to remove salt-and-pepper

noise that is common in raster-based classification approaches. We

therefore suggest that the application of such a filter likely improved

the classification maps more than introducing errors by omitting

small-scale disturbances. As we were mainly interested in investigat-

ing large-scale forest-cover trends, this form of omissions of small

disturbance patches likely only have a very minor effect on the overall

results. Second, positional uncertainties in the Landsat images

prevented us from labeling points at the forest/non-forest bound-

aries, which were subsequently excluded from our analysis. These

points were also not included in the accuracy assessment, so that

classification accuracies in regions where mixed pixels were wide-

spread are possibly overestimated. Third, the positional uncertainties

also possibly influenced the quality of the change classes: our training

strategy only considered stable ‘forest’ and ‘non-forest’ pixels while

not explicitly training on the dynamic classes. This possibly intro-

duced classification errors especially in regions of forest recovery,

either after forest disturbance or in case of re-growing forests on

abandoned agricultural fields. For example, depending on the spectral

characteristics of the landscape manifested in the image, young de-

ciduous forest stands on former agricultural fields, may have been

assigned to the ‘non-forest’ category because their reflective spectra

were more similar to an agricultural field during the summer than

the forest category. In some cases, this might have lead to omissions

of forest recovery in certain time steps, but highlighting them in the

following time step. In other words, our training design that focused

on the constant classes might have caused that the detected forest

Table 1

Classified footprints and average classification accuracies. All values represent percentages, except for the kappa-values, which range between 0 and 1, and were obtained by 10-fold

cross-validation.

Overall

accuracy

Kappa User's accuracy Producer's accuracy F1-Measure

F NF F NF F NF

Average accuracies by

path/row

176021 94.37 0.95 94.46 93.96 95.32 95.72 92.90 94.83

181022 95.10 0.951 94.92 95.03 95.16 92.98 96.58 93.99

171022 97.16 0.972 95.99 96.91 97.24 90.95 99.10 93.82

179023 97.14 0.97 97.02 97.30 97.07 95.68 98.07 96.48

169020 96.98 0.97 96.97 97.18 96.81 96.97 96.96 0.971

167020 96.25 0.96 96.24 96.27 96.26 96.18 96.27 96.22

175019 93.93 0.94 91.92 93.27 96.11 98.73 81.06 95.92

174024 95.69 0.96 88.14 95.25 95.73 67.26 99.56 78.67

166022 96.40 0.96 95.83 95.68 96.73 92.97 98.02 94.30

179019 95.30 0.95 95.29 94.44 96.14 95.88 94.74 95.15

172020 97.27 0.97 97.27 96.64 97.90 97.76 96.80 97.19

183019 94.04 0.94 93.47 93.69 94.73 97.16 88.60 95.39

Average accuracies by

time-step

1985 95.59 0.96 94.71 95.55 96.03 93.19 94.66 94.14

1990 95.38 0.95 94.05 94.98 95.73 91.52 95.04 92.78

1995 95.93 0.96 94.91 95.86 96.18 92.69 95.55 94.02

2000 95.89 0.96 94.91 95.32 96.50 93.26 95.05 94.12

2005 95.89 0.96 94.99 95.65 96.30 93.61 94.90 94.44

2010 96.13 0.96 95.20 95.44 96.85 94.85 94.13 95.02

Accuracies across all classifications Mean 95.80 0.96 94.79 95.47 96.27 93.19 94.89 94.09

STD. 1.51 0.01 2.85 1.76 1.35 8.56 5.23 5.21

Max 98.28 0.98 98.23 98.18 98.76 99.30 99.75 98.30

Min 91.16 0.91 81.01 90.68 92.08 51.78 76.56 66.01

Table 2

Accuracy measures for six randomly selected change-maps. Presented are overall accuracy, kappa for the entire change map; for the classes F (persistent forest), NF (persistent

non-forest), D (disturbance) and R (regrowth) user's and producer's accuracy are provided. All values represent percentages, except the kappa values, which range between

0 and 1.

Map Overall

accuracy

Kappa User's accuracy Producer's accuracy

F NF D R F NF D R

175019 1985–1990 93.49 0.93 95.00 94.00 78.00 80.00 97.95 88.19 69.32 76.15

179023 1985–1990 94.47 0.85 93.00 97.00 80.00 81.00 98.41 94.51 64.77 68.49

176021 1985–1990 94.20 0.94 96.00 93.00 90.00 80.00 98.76 95.59 44.01 49.85

169020 1990–1995 94.45 0.94 94.00 96.00 88.00 77.00 98.28 94.29 100.0 46.66

181022 2000–2005 90.96 0.91 92.00 91.00 80.00 81.00 96.23 96.20 74.20 24.03

183019 2005–2010 93.52 0.94 94.00 97.00 80.00 78.00 98.57 85.50 80.16 100.0
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recovery be assigned to the ‘wrong’ time step, slightly influencing the

spatial-temporal pattern. For the study period and the subset of

Landsat footprints (1985–2010) as a whole, however, we are confident

of the mapped total area estimates. Finally, the comparison of mono-

temporal maps in a time series might have led to an accumulation of

classification errors over time. Indeed, the accuracy assessments for

our change maps showed accuracy rates that were slightly lower than

the theoretical suggestions by Coppin et al. (2004). The validation and

the interpretation of accuracy assessments of long classification time se-

ries is a problem that has rarely been tackled in the remote sensing

literature. Cohen et al. (2011) recently provided a method and tools

for the validation and interpretation of dense time stacks. However

his framework mainly focuses on time series of annual observations.

Formany regions of theworld, such as the present case, data availability

does not allow for annual observations, subsequently leading to other

interpretations of detected change. How to handle classification errors

that propagate through the time series and how to interpret change

products from such analyses, however, has not been investigated yet,

despite the fact that this type of analysis will likely gain importance in

the future. We therefore suggest that further studies should focus on

accuracy measures for long time series that do not consist of annual

observations.

6. Conclusions

In this paper we characterized forest-cover changes between 1985

and 2010 in 5-year-intervals for Russia's temperate forests using a

stratified random sample of Landsat footprints. Our results suggest

that forest cover decreased after 1991, but since 2000, the region ex-

perienced a net forest-cover increase especially so after 2005.

The large variations at the regional and district levels and over time

indicate that socioeconomic conditions and the major socioeconomic

changes, including changes in forest administration and legislation,

that occurred after the collapse of the Soviet Union likely influenced

forest cover in the temperate region of European Russia.

The regrowth of forests on abandoned farmlands possibly provide

important opportunities for carbon sequestration as suggested from

studies in other Eastern European regions (Kuemmerle et al., 2011).

The detected widespread farmland abandonment in European Russia

and the ongoing and observed onset of forest regrowth on these areas

could indicate that the region potentially could turn into a large

carbon sink in the future.

From a remote sensing perspective, our studymakes twomain contri-

butions. First, when available data in space and time are limited, sampling

a representative subset of Landsat scenes offers the opportunity to study

forest-cover changes across a large area over a long time period and to

highlight strong spatial-temporal variations of forest-cover change. Sec-

ond, our study shows for the temperate zone that winter images can be

useful to improve classification accuracy when acquisition dates are sub-

optimal; and we emphasize the value of winter imagery in forest-cover

classifications, given that in some regions of the world data availability

is very low.
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