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Combining Satellite-Based Fire Observations and
Ground-Based Lightning Detections to Identify
Lightning Fires Across the Conterminous USA

Avi Bar-Massada, Todd J. Hawbaker, Susan I. Stewart, and Volker C. Radeloff

Abstract—Lightning fires are a common natural disturbance in
North America, and account for the largest proportion of the area
burned by wildfires each year. Yet, the spatiotemporal patterns
of lightning fires in the conterminous US are not well understood
due to limitations of existing fire databases. Our goal here was to
develop and test an algorithm that combined MODIS fire detec-
tions with lightning detections from the National Lightning De-
tection Network to identify lightning fires across the conterminous
US from 2000 to 2008. The algorithm searches for spatiotemporal
conjunctions of MODIS fire clusters and NLDN detected lightning
strikes, given a spatiotemporal lag between lightning strike and
fire ignition. The algorithm revealed distinctive spatial patterns of
lightning fires in the conterminous US While a sensitivity analysis
revealed that the algorithm is highly sensitive to the two thresholds
that are used to determine conjunction, the density of fires it de-
tected was moderately correlated with ground based fire records.
When only fires larger than 0.4 km were considered, correlations
were higher and the root-mean-square error between datasets was
less than five fires per 625 km for the entire study period. Our al-
gorithm is thus suitable for detecting broad scale spatial patterns
of lightning fire occurrence, and especially lightning fire hotspots,
but has limited detection capability of smaller fires because these
cannot be consistently detected by MODIS. These results may en-
hance our understanding of large scale patterns of lightning fire
activity, and can be used to identify the broad scale factors con-
trolling fire occurrence.

Index Terms—Fire, lightning, MODIS, NLDN.

I. INTRODUCTION

L IGHTNING is the most common natural ignition source
of wildfires, and lightning fires are a major form of nat-

ural disturbance in many ecosystems in North America [1]–[3].
On average, lightning fires burn more area than human ignited
fires (average burned areas of 333.76 ha and 77.64 ha, respec-
tively, based on the US Federal Fire Occurrence Database for
years 2000–2008; Bar-Massada, unpublished) because they
often occur in remote areas, where they are detected later and
are less accessible to suppression forces [1]. A lightning fire
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ignition is the outcome of a complex sequence of events, and
depends on the lightning flash and thunderstorm characteristics,
coupled with fuel conditions [4]–[8]. The spatial and temporal
patterns of lightning fires are affected by various driving
factors including large-scale climatic patterns [9]–[11], local
weather conditions [8], [12], [13], land cover [3], [14], [15],
and topography [3], [16], [17]. However, our understanding of
the causes of spatiotemporal variability in lightning fires is still
limited, partly due to a lack of good spatial data on lightning
fire occurrences.
Ground-based lightning detection systems are relatively new.

All lightning flashes radiate electromagnetic energy at a broad
range of frequencies, which travels through the lower atmos-
phere for hundreds to thousands of kilometers, depending on
flash type and electromagnetic frequency [18]. Different fre-
quencies of electromagnetic energy can be detected by ground-
based receivers located in meteorological stations. When elec-
tromagnetic energy is detected by two or more receivers, the lo-
cation of a lightning strike can be triangulated with moderate to
very high accuracy, depending on the detector type and the spa-
tial configuration of the detection network relative to the light-
ning strike location. Triangulation provides the spatial compo-
nent for lightning records, which makes research on lightning
ignition patterns feasible.
In the US, the National Lightning Detection Network

(NLDN) has been providing real-time, continental-scale light-
ning information since 1989 [18], [19]. The NLDN consists of
106 sensors using the Improved Accuracy through Combined
Technology (IMPACT) algorithm, which requires as few as
two combined sensors to optimize the detection of lightning
location, denoted by latitude, longitude, and discharge time.
IMPACT sensors, in contrast to earlier sensors, combine two
detection technologies (Time-of-Arrival, or TOA; and Mag-
netic Direction Finder, or MDF) to improve detection accuracy.
Thereby the two sensors provide redundant information about
the location of a strike, and this enables the optimization of
its location detection [18]. The estimated flash detection effi-
ciency (i.e., the proportion of correct detections) of the NLDN
following the IMPACT upgrade is 84% (if strokes less than 5
kA are excluded), or 72% (for all strokes) [20], and the median
location accuracy is 484 m [21]. Both detection efficiency and
location accuracy increase with stroke peak current, and vary
among lightning storms, possibly due to variations in lightning
characteristics [20]. However, lightning data has been of lim-
ited use for fire research because it does not depict whether a
lightning strike ignited a fire or not.
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Satellite observations of active fires show promise for
broad-scale assessments of fire occurrence. Broad-scale ac-
tive-fire detections have been based on four primary sensors: the
National Oceanic and Atmospheric Administration’s (NOAA)
Advanced Very High Resolution Radiometer (AVHRR) [22],
the European Space Agency’s (ESA) Along Track Scanning
Radiometer (ATSR) [23], NOAA’s Geostationary Opera-
tional Environmental Satellite (GOES) [24], and the National
Aeronautics and Space Administration’s (NASA) Moderate
Resolution Imaging Spectroradiometer (MODIS) active fire
sensor [25]. The MODIS sensor, onboard NASA’s Earth
Observing Satellites (EOS) TERRA and AQUA satellites,
provides fire detections for each orbit, resulting in multiple
daily observations over most of the globe with 1-km spatial
resolution [25].
Of these four sensors, MODIS is the most widely used and

was specifically designed for ecosystem monitoring including
fire detection [25]. Therefore, we focused our analysis on
MODIS, but our methods could potentially be adapted to other
sensors. MODIS active fire data have been used to quantify
several aspects of fire occurrence, such as the human role in
Russian wildfires [26], the tropical diurnal fire cycle [27], the
global distribution of agricultural fires [28], global fire activity
[29], [30], and global fire distribution and seasonality [31].
Ten years of data from MODIS and its predecessor active-fire
sensor NOAA AVHRR were used to study spatio-temporal fire
occurrence in Borneo, revealing the effect of extreme weather
(El Nino years) on fire activity [32]. The effects of population
density and land cover on fire occurrence were assessed in
Mediterranean-climate ecosystems [33], and globally [30].
However, the common limitation to all types of satellite fire
detection data is the lack of information about the source of
the ignition. This is unfortunate, because the spatiotemporal
patterns of fire occurrence can provide invaluable information
for development of management strategies and fire risk assess-
ments [34], [35], by identifying which areas are more likely to
burn in human dominated landscapes and natural ecosystems
alike.
The question is if NLDN and MODIS data together can

provide the information needed for broad-scale fire assess-
ments that neither dataset can provide by itself. Our goal was to
develop and evaluate an algorithm that combines MODIS fire
detections and NLDN lightning detections to identify which
MODIS detected fires may be caused by lightning. We applied
our algorithm in the entire conterminous US, based on data
from late 2000 to 2008, to quantify the spatiotemporal patterns
of lightning fires in that region.

II. METHODS

A. Lightning Data

We used the federally-owned NLDN data, obtained from the
National Interagency Fire Center (Boise, ID) and the Desert
Research Institute (Reno, NV), to determine the location and
timing of lightning strikes detected within the conterminous
US between late 2000 and 2008. The raw data were converted
from tabular form to daily GIS point datasets (based on the
geographic location of each lightning strike). We screened out

any lightning strike located outside the boundary of our study
area, the conterminous US Each point dataset represented all
cloud-to-ground (CG) lightning strikes that were detected by the
NLDN during a single day.

B. MODIS Fires—Data Acquisition and Pre-Processing

The MODIS active fire detection algorithm identifies the
characteristic signature of active fires in the 3.9- m and
10.5- m channels, and tests whether the signals in these chan-
nels are different from those of surrounding, non-fire pixels
[36]. MODIS detects fire activity within pixels rather than de-
tecting individual fires (thus there may be more than one active
fire per pixel), and the theoretical detection rate of a 100-m
fire is 50% [36]. MODIS detection accuracy depends on fire
size (larger fires are better detected), temperature (hotter fires
are better detected), and the temperature difference between the
fire and its surrounding area (i.e., a higher contrast between the
temperature of the fire and the surface temperature in its vicinity
results in better detection). In practice, although MODIS often
fails to detect small fires, it consistently detects larger fires
[37], which are ecologically more relevant [38]. Another
factor limiting active fire detection by MODIS and all other
satellite sensors is cloud cover. Since satellite sensors cannot
detect active fires that are obscured by clouds, the detected fire
activity is an underestimate of actual fire activity, but we did
not know in advance to what extent. This is especially true for
lightning fires, which ignite under thunderstorm clouds but can
only be detected after the storm passes. Because individual
thunderstorms pass within a matter of minutes to hours while
many wildland fires persist for days to weeks, ignition masking
by clouds typically delays but does not prevent fire detections.
We downloaded the 1-km daily TERRA and AQUA

based MODIS thermal anomalies and fire daily im-
agery (MOD14A1 and MYD14A1, respectively) from the
US Geological Survey (USGS) FTP site (TERRA data:
ftp://e4ftl01.cr.usgs.gov/MOLT/MOD14A1.005/, AQUA data:
ftp://e4ftl01.cr.usgs.gov/MOLA/MYD14A1.005/, last ac-
cessed February 21st 2011), starting from November 2000 for
TERRA, and July 2002 for AQUA. We used the MODIS repro-
jection tool (MRT, available from the USGS Land Processes
Distributed Active Archive Center: https://lpdaac.usgs.gov/lp-
daac/tools/modis_reprojection_tool, last accessed February
21st 2011) to mosaic individual footprints into a single image
for the entire study area. Then, we reprojected the mosaics from
MODIS’s native sinusoidal projection to NAD 1983 Albers
projection which is suitable for analyses of the entire conter-
minous US. Finally, we combined the TERRA and AQUA
daily mosaics by assigning daily fire occurrence for each pixel
if either TERRA or AQUA reported a fire in that pixel in a
given day. We used only high confidence detections (MODIS
reports three confidence levels for fire detections, low, nominal,
and high) to obtain the most conservative indication of fire
activity. In addition, we are aware that combining both satellite
datasets prevented us from analyzing intra-daily differences
in fire patterns. Yet, we still opted for doing this since having
multiple satellite overpasses per day reduces the negative
effects of cloud obscuration on fire detection. In addition, we
assumed that most of the fires that our algorithm detected were
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multi-day events, thus major differences between datasets were
not expected.

C. MODIS Fires—Generation of Fire Clusters and the
Conjunction Algorithm

MODIS fire data denote fire activity within pixels, regardless
of fire size, number of fires, or fire location within the pixel;
therefore it is not possible to use MODIS fire data directly to
identify ignition locations or individual fire perimeters. How-
ever, it is possible to generate proxies of individual fires using
a clustering algorithm [37]. The algorithm identifies groups of
fire pixels that are adjacent in space (have a shared boundary in a
given day) and time (occur in the same location on subsequent
days) to delineate fire clusters. The underlying assumption is
that fire clusters represent individual fire events, although some
may represent several small fires that occur very close to each
other. On the earliest day on which a given fire cluster appeared,
its location is considered to represent a “fire seed”, or a potential
ignition location. Since the size (number of pixels) of a fire seed
may have an effect on the conjunction algorithm (see below), we
also quantified the size distribution of fire seeds.
Starting with the MODIS fire seeds, we identified lightning

fire clusters by employing a spatiotemporal conjunction algo-
rithm to jointly evaluate MODIS and NLDN data. We assumed
that if a MODIS fire seed overlapped or occurred within a cer-
tain distance threshold d from the location of a nearby light-
ning strike (to account for geo-location errors in both datasets),
and occurred within a certain temporal threshold t after the cor-
responding lightning strike (to account for smoldering, cloud
obscuration, and fire size growth until it can be detected by
MODIS), then lightning was the likely cause of that MODIS
fire seed. Given that the distance threshold d and the temporal
threshold t were unknown in advance, we employed the con-
junction algorithm with three distance thresholds (1 km, 2 km,
and 3 km) and 15 temporal thresholds (zero, or same day, up to
14 days). The shortest distance threshold accounts for the loca-
tion accuracies of the lightning data (median 500 m) and the ge-
olocation accuracy of the MODIS instrument onboard TERRA
(mean geolocation errors of 18 m ( 38 m) across-track and
4 m ( 40 m) along-track [39]). The potential influence of the
MODIS point-spread function, which results in a larger spatial
footprint with increasing scan angles and potential distortion in
fire locations, was also reduced as our distance thresholds in-
creased. We restricted the longest distance threshold to 3 km to
limit the possibility of chance conjunctions, or commission er-
rors (i.e., human ignited fires that had a lightning strike in their
vicinity that did not contribute to the ignition).
We used a long range of temporal thresholds to account for

the two possible causes of fire misdetection by MODIS: fire
size and cloud obscuration. Fires had to grow to a size that
could have been detected by MODIS. The longer the lag, the
higher the chance of a fire being large enough and consequently
being detected during satellite overpass. Since lightning fires ig-
nite under cloud cover, they cannot be immediately detected by
MODIS. As time passes, the storm front moves while the fire
grows, decreasing the chance of cloud obscuration during sub-
sequent satellite overpasses. Because each is a function of time,
the range of temporal thresholds is necessarily wide.

Finally, for visualization purposes, we converted the MODIS
lightning fire seeds from groups of pixels to point locations by
determining their centroids, and tallied the number of lightning
fire seeds within square units of 25 km by 25 km which were
overlaid as a grid across the conterminous US We generated
raster maps for each threshold combination to compare the spa-
tial patterns of MODIS lightning fire seeds across the entire
study area.

D. Comparison With Federal Fire Data

To assess how our lightning fire detection algorithm com-
pares to ground-based data, we compared the number of
MODIS detected lightning fires to the number of lightning
fires on federal lands as reported in the Federal Fire Oc-
currence Database. The Federal Fire Occurrence Database
(http://fam.nwcg.gov/fam-web/weatherfirecd/fire_files.htm,
last accessed February 21st, 2011) reports the characteristics
of every fire suppressed on or near federal lands. However,
federal lands cover only about 30% of the conterminous US,
thus for a large proportion of the nation there are no consistent
wildland fire records. In addition, limited quality control, re-
porting errors (in location, timing, and cause of fires), missing
or duplicate records, and difference among agencies hamper
the usability of this vast dataset for a national scale study of
spatio-temporal patterns of fires [40]. Still, the relatively high
accuracy in the places that the Federal Fire Occurrence data
are collected makes it a suitable dataset for comparison (not
validation) with our satellite-based detection algorithm. To
reduce inaccuracies in the database, we modified the approach
used by [13]. We checked whether the ignition location of each
reported lightning fire was within 2 km, and up to two days
after, each lightning strike recorded in the NLDN. Fires that did
not satisfy these spatiotemporal lag criteria were considered
to have a high probability of being erroneously identified as
lightning fires, and were omitted from the subsequent analysis.
The 2 km distance rule accounts for potential location errors
of both the fire and the lightning data [13], [21]. We then
compared the fire ignition data from the refined federal dataset
to our MODIS lightning fire seeds.
Since we anticipated that MODIS would fail to detect small

fires [37], we conducted the comparison twice, first with all
sizes of federally reported fires, then with federally reported
fires larger than 0.4 (100 acres) since they would have a
better chance of being detected by MODIS. We performed the
comparison only inside federal lands since the federal fire data-
base does not provide consistent information about fires out-
side federal lands. We employed the same 25 km by 25 km grid
system we used for summarizing theMODIS lightning fire clus-
ters as the basis of our sampling (i.e., the number of fires per
square sample unit was compared between the MODIS and fed-
eral datasets over the entire study period). To ensure maximal
overlap between datasets, we conducted the comparison only in
sample units that contained 100% federal lands. This resulted in
91 final sample units (out of 7529 sample units that contained
at least some portion of federal lands). To compare between
the MODIS detections and the federal dataset, we calculated
Spearman’s correlation coefficient (since the data were not nor-
mally distributed) between theMODIS and federal fire counts at
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the 91 final sample units from the grid system described above,
and also calculated the root mean square error (RMSE) between
datasets at the same sample units. Finally, we used Spearman’s
correlation coefficient to compare the fractions of lightning fires
out of all fires between datasets (i.e., what proportion of all fires
seeds detected by MODIS are attributed to lightning, versus the
proportion of federally reported lightning-ignited fires out of all
federally reported fires).

E. Spatial Patterns of Cloud Obscurationm

The MODIS sensor cannot detect active fires when cloud
cover is present. The MODIS fire products include a cloud
mask that identifies pixels that were cloud obscured to a level
that could have prevented active fire detection. However,
MODIS-fire data products are available as eight-day stacks,
where each daily observation may have resulted from several
satellite overpasses, depending on latitude. In these cases,
overpasses with fire or clear land detections are given a higher
priority than cloud detections in the final assignment of pixel
values (e.g., if in a single day there was one fire overpass and
one cloud overpass, the pixel value will be ‘fire’). Therefore,
it is not possible to directly detect which MODIS fire seeds
(or federal fire detections for that matter) are cloud-obscured
(especially since there may also be a slight location error in
both datasets). We used the MODIS cloud mask information to
identify pixels where it was impossible to know if there was
fire activity, since there was consistent cloud obscuration at
the time of satellite overpass. We tallied the number of cloud
detections per pixel during the prominent burning season in the
US, from April to September.

III. RESULTS

A. Patterns of Lightning Strikes and MODIS Lightning Fire
Seeds

Between 2000 and 2008, there was a distinctive spatial pat-
tern of CG lightning strikes across the conterminous US, with
the most frequent lightning in the south-eastern and the cen-
tral US (Fig. 1). Other, more isolated areas of lightning activity
occurred in the mountainous south-west in Arizona and New
Mexico, and the eastern slopes of the Rocky Mountains in Col-
orado. These results are similar to the patterns reported by [41]
for past periods.
The average size of the MODIS fire seeds was 4 , with

a standard deviation of 6.81 . Twenty-eight percent of the
fire seeds consisted of a single pixel, while 23%, 14%, 8%, 5%,
and 4% consisted of two, three, four, five, and six pixels, re-
spectively. Thus, 82% of the MODIS fire seeds had six or fewer
pixels, corresponding to a ground area of up to 5.15 . On
the other hand, 8% of the MODIS fire seeds were larger than
10 , and there were 11 fire seeds larger than 100 .
The number of MODIS lightning fire seeds detected by the

spatiotemporal conjunction algorithm was strongly affected by
the temporal threshold, and was moderately affected by the dis-
tance threshold (Fig. 2). Longer temporal thresholds and larger
distance thresholds increased the number of MODIS fire seeds
being identified as associated with lightning.When the temporal

Fig. 1. Mean annual lightning activity in the conterminous US from 2000 to
2008. Each pixel is shaded based on the annual average number of NLDN de-
tected lightning strikes during the study period.

Fig. 2. Effects of temporal (x-axis) and distance thresholds (circle colors:
1 km—white, 2 km—gray, and 3 km—black) on the number of MODIS
lightning fire clusters between 2000 and 2008 across the conterminous US.

threshold was zero (i.e., fire occurred at the same day as light-
ning strike), the numbers of lightning fire seeds in the entire
study period (2000–2008) were 4446, 6090, and 7445 for the
1 km, 2 km, and 3 km distance thresholds, respectively. These
numbers increased almost linearly to 37455, 49225, and 57487
at the sixth day, after which they started to gently taper off. At
the longest temporal threshold, 14 days, the numbers of light-
ning fire seeds were 69940, 87342, and 98480 for the 1 km,
2 km, and 3 km distance thresholds, respectively. These values
represent a 1473%, 1334%, and 1222% increase from their cor-
responding values at the temporal threshold of zero, at the three
distance thresholds, respectively. Therefore, the spatiotemporal
conjunction algorithm was highly sensitive to the choice of tem-
poral threshold and to a lesser extent to the choice of spatial
threshold.
The proportions of lightning fire seeds out of all fire seeds

(i.e., including those that did not conjunct with lightning strikes
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at a given thresholds) also varied by distance and temporal
thresholds. At a temporal threshold of zero, lightning fire seeds
were 2.1%, 17.5%, and 32.5% of all MODIS fire seeds, for
distance thresholds of 1 km, 2 km, and 3 km, respectively.
These percentages increased to 2.9%, 23.2%, and 41.2% on the
sixth day at the corresponding distance thresholds, and up to
3.5%, 27.2%, and 46.6% at the longest temporal threshold of
14 days.
Regardless of choice of threshold, the lightning fire patterns

detected by MODIS did not follow the patterns of lightning
strikes very closely, and differed especially in the northwestern
U.S (Figs. 1 and 3), although there was a better agreement in the
southwestern US and in Florida. Lightning fire activity peaked
in the Southeast, especially in Florida, Alabama, Louisiana, and
eastern and central Texas. Another hotspot of lightning fire ac-
tivity occurred in Kansas and Oklahoma. In the western US, iso-
lated hotspots of lightning fire activity were detected in the Pa-
cific Northwest, especially in the border region between central
Idaho andMontana, and in central Oregon, in southernMontana
and northern Wyoming; and in other Western states including
northern Nevada, along the border of Nevada, Utah, and Ari-
zona, and in central Arizona and western New Mexico. Most of
these areas were subjected to considerably lower lightning ac-
tivity compared to the southeastern US, but still had pronounced
lightning fire activity.

B. Comparison With Federally Reported Lightning Fires

At the majority of temporal and distance threshold levels, the
federal fire database reported more lightning fires than our algo-
rithm when all fire sizes were considered (Fig. 4). The number
of federally reported lightning fires had a low to moderate cor-
relation (Spearman’s r from 0.24 to 0.61) with the number of
MODIS lightning fire seeds (Fig. 5(a)). Larger distance thresh-
olds almost always increased the correlation, while longer tem-
poral thresholds increased the correlation until the seventh day,
after which the effect of temporal threshold on the correlation
between datasets was minor.
When only federal fires larger than 0.4 were compared

with the MODIS lightning fire seeds, our algorithm tended to
report more fires than the federal fire database, except for the
shorter temporal and distance thresholds (Fig. 4). The correla-
tion between datasets increased regardless of threshold levels
(Fig. 5(b)). The highest correlation, 0.71, was obtained at the
2-km/7 days thresholds combination. Here, too, longer temporal
thresholds increased the correlation among datasets until the
seventh day, after which the correlation slightly decreased and
then stabilized at day 10. The 3 km distance threshold yielded
the highest correlations on the first three days, after which the
2 km distance threshold consistently yielded the highest cor-
relations at any subsequent temporal threshold. Finally, in all
threshold combinations, the number of MODIS lightning fire
seeds was larger than the number of federally reported lightning
fires that were larger than 0.4 .
The root mean square error (RMSE) between the number of

MODIS fire seeds and the number of federal fires was mod-
erate (15.26–18.07, depending on threshold combination) when
all federally reported fire sizes were included (Fig. 5(c)), and

Fig. 3. Spatial patterns of MODIS lightning fire seeds across the entire con-
terminous U.S, between 2000 and 2008, at three threshold combinations: zero
days/1 km (top), seven days/2 km (middle), and 14 days/3 km (bottom). The
numbers of MODIS lightning fire seeds are tallied for 25 km by 25 km pixels
for visualization. The sample units used for comparing the MODIS and federal
datasets appear as black triangles. State boundaries appear in gray.

low (1.71–5.53) when only fires larger than 0.4 were com-
pared (Fig. 5(d)). When all federally reported fires were com-
pared with MODIS fire seeds, the RMSE decreased with an in-
creasing temporal threshold (i.e., the similarity between datasets
increased) and slightly decreased with an increasing distance
threshold. In contrast, when only fires larger than 0.4 were
accounted for, the opposite trend occurred, as the RMSE in-
creased with both distance and temporal threshold. This was
caused by commission errors, since the federal fire database had
many zeros (68%) in the sample plots, therefore any increase in
the number ofMODIS fire seeds (which would be expected with
increasing thresholds) would have increased the difference from
zero, and subsequently increased the RMSE. In contrast, when
all fire sizes were accounted for, the federal database usually
had more fires per sample plot (compared to the MODIS data),
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Fig. 4. Relationships between the number of MODIS lightning fire seeds and federally reported lightning fires in the 91 sample plots (black circles) across the
federal lands of the conterminous US. Each sample plot is a square of 25 km by 25 km, consisting of 100% federal lands (to ensure complete coverage of the
federal database). Plots in the left column are based on all fire sizes from the federal database, while the right column is based on federally reported fires that were
larger than 0.4 . The temporal and distance thresholds denoting the data appear at the top of each plot. The dotted line denotes a 1:1 fit (i.e., data point under
the line depict cases where there was more federally reported fires than MODIS fire seeds, and vice versa).

so any increase in the number of MODIS fire seeds decreased
the differences in fire counts, and subsequently decreased the
RMSE.
The correlations between the proportions of MODIS light-

ning fire seeds (out of all MODIS fire seeds) and the proportion
of lightning-ignited federally reported fires (out of all reported
fires) were generally low (0.11–0.36), and depended mainly
on the choice of temporal threshold. Higher correlations were
typically associated with intermediate temporal thresholds
(8–9 days) and the 2 km distance threshold, though the overall
relationships were not as consistent as those obtained from the
comparison of fire counts.

C. Patterns of Cloud Obscuration

Cloud obscuration between April and September varied
greatly across the conterminous US ranging from less than

10% of days in the southwestern US (especially in southern
California), up to more than 30% in the Rockies and Cascade
Mountains in the West, and the Appalachian Mountains in the
East (Fig. 6). The Canadian Rockies had the largest proportion
of cloudy days by far, with 30.4% of the days between April and
September classified as consistently cloudy. The southeastern
US, which had the largest number of lightning fires, had a
moderate level of cloud obscuration, with about 15% cloudy
days.

IV. DISCUSSION

MODIS active fire products provide a unique and valuable
data source for broad-scale studies of fire occurrence due to the
sensor’s high temporal resolution and moderate spatial resolu-
tion [25], [30], [31]. However, the MODIS fire data do not pro-
vide information about the causes of fire ignitions, which is a
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Fig. 5. Correlations and root-mean-square errors (RMSE) between the num-
bers of federally reported lightning fires and MODIS lightning fire seeds at dif-
ferent temporal (x-axis) and distance thresholds (1 km—white, 2 km—gray, and
3 km—black). (a) correlation with all federally reported fire sizes; (b) correla-
tion with fires larger than 0.4 ; (c) RMSE with all federally reported fire
sizes; (d) RMSE with fires larger than 0.4 .

Fig. 6. Average number of MODIS daily cloud detections from April to
September.

major component in understanding past and present fire patterns
and risk. Here, we addressed this limitation by developing a spa-
tiotemporal conjunction approach, in which the cause of fires,
in this case lightning, was identified by the conjunction of fire
activity from MODIS and lightning activity from the NLDN.
Even though MODIS is limited in its ability to detect small
fires [37], and does not provide direct information about indi-
vidual fire events but rather fire occurrence within pixels, there
was a large number of MODIS fire seeds that co-occurred with
NLDN detected lightning strikes, and the results of our algo-
rithm were moderately correlated (in some threshold combina-
tions) with ground-based reports of lightning fire occurrence,
especially when smaller fires were excluded. This
enhances the understanding of broad scale spatiotemporal pat-
terns of lightning fire occurrence, and may facilitate research
about the factors that determine lightning fire activity.
Despite the algorithm’s sensitivity to the choice of temporal

and distance thresholds, the locations of the major lightning fire

hotspots were consistent across different threshold values, and
only the number of fires varied. Similarly, though the correla-
tion between MODIS lightning fire seeds and federally reported
lightning fires increased with both temporal and distance thresh-
olds, maximum correlations were reached after a seven day tem-
poral threshold and did not change much at longer thresholds.
This is because in the sample plots, almost no fires occurred
within the distance threshold buffer more than eight days before
the onset of the MODIS fire seed (even though the number of
assigned lightning fire events increased overall across the entire
study area). Moreover, differences between MODIS and feder-
ally reported lightning fire counts were low for fires larger than
0.4 , but moderate when all fire sizes were accounted for.
In contrast, correlations between the proportions of lightning
fires (out of all fire types) in the MODIS and federal fire occur-
rence database were low. This was expected given the limita-
tions of both datasets in identifying the ignition source correctly.
These outcomes suggests that the spatiotemporal conjunction
algorithm can detect large scale spatial patterns of lightning fire
occurrence (especially when fires are large), but is less suited for
quantifying the number of fires or the fraction of lightning fires
out of all fires because of MODIS’s inability to detect small fires
[37], and the effect of cloud obscuration that hinders fire detec-
tion by satellite-borne sensors.
Between 2000 and 2008, the US had a pronounced spatial pat-

tern of lightning fire activity, with several fire hotspots, mostly
in the Southeast, but also in the Southwest, the Central Plains,
and the northwestern US In contrast to the general perception of
lightning fires occurring mostly in the western U.S, our results
highlight pronounced lightning fire activity in the southeastern
US, where there is almost no federal land, and therefore less
consistent collection of fire occurrence data. However, the cen-
tral US hotspot of lightning fire activity was a surprise to us,
since the central US is not commonly considered to be a hub
of lightning fire activity. This hotspot may be an overestimate
though, caused by the abundance of agricultural fires [42], as
prescribed burning of pasture lands by ranchers at the onset of
the growing season has been a common in this region for the
past century [43].
The reliability of the spatiotemporal conjunction approach

depended on several factors, first and foremost the detection
characteristics of both MODIS and the NLDN. The ability to
detect active fires by MODIS is affected by fire characteristics
(especially the amount of thermal radiation, since the detection
algorithm exploits the radiometric contrast between active fires
and their surroundings), the timing of satellite overpass versus
fire activity [27], and cloud cover (which can obscure fire ac-
tivity). MODIS has difficulties detecting small fires [37], espe-
cially at large scan angles where only a limited amount of en-
ergy reaches the sensor [36], [44]. Therefore, we assumed that
most of the fires detected by our algorithm were large, as large
fires are also more likely to persist longer, which reduces the
risk of cloud obscuration. Since the conjunction algorithm was
based on the spatial and temporal overlap of fires and lightning
strikes, there is a higher probability of overestimating lightning
fires at the expense of human caused fires in areas that have an
extremely high number of both fires and lightning strikes. Out
of the large numbers of lightning fires identified by our algo-
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rithm in the southeastern regions, some may have actually been
human caused fires that were erroneously labeled as lightning
fires. This is a possibility because of the widespread human de-
velopment in the Wildland Urban Interface in the Southeast,
which is correlated with increased human fire ignitions [35],
[45]. In these areas, chance occurrence of lightning strikes at the
time of human-ignited fires may increase the commission error
(identifying non lightning fires as lightning fires), and thus our
results probably represent the upper bound for lightning fires.
In several mountain regions, especially in the Rockies and the

Appalachians, cloud obscuration occurred on more than 30% of
the days between April and September. Given that these areas
are known hotspots of lightning fire activity, this cloud obscu-
ration may have caused an underestimation of lightning fire de-
tections by our algorithm. Mountain regions typically exhibit
longer periods of consistent cloud cover, which causes satel-
lite-based fire detections to underestimate the number of fires
regardless of ignition source, but the underestimation of light-
ning fires will bemore pronounced since lightning is more likely
on cloudy days. Cloud obscuration is an inherent limitation of
satellite based fire detections, so the use of these detection tools
requires identification of those areas most prone to cloud cover;
in our case the mountainous regions of both the eastern and
western US.
Beyond the detection capability per se, the grouping of

MODIS fire pixels into fire clusters, based on the approach of
[37], may have impacted the results. The fire seed identification
and fire pixel clustering approach assumed that neighboring
pixels that burn at the same time are part of the same fire.
Due to MODIS’s data structure and resolution (fire activity per
pixel rather than individual fires), the number of fires may be
underestimated, especially when many small fires burn near
each other. According to a separate analysis of the Federal Fire
Occurrence Database (Bar-Massada et al., unpublished), 6.4%
of the lightning fires burned within 1 km of each other on the
same day, so it is possible that some of the fire clusters identified
here actually consist of several individual fires lumped together.
However, duplicate fire records from different agencies, which
are difficult to identify and remove automatically, are another
potential source of error in the Federal Fire Occurrence Data-
base and counteract this bias, tending to inflate the number
of fires. Errors caused by fire seed clustering can affect both
the detection efficiency (as seed locations may misrepresent
actual fire ignition areas), and the number of fires detected (by
merging separate small fires in close geographic proximity via
the clustering algorithm).
The most important assumption affecting the performance of

our algorithm was that conjunction, i.e., fire and lightning oc-
currence in the same space and at the same time, indicates the
ignition source as lightning. This assumption may have biased
the results in several ways. First, ignition locations (strikes) and
fire locations may be spatially (and temporally) inaccurate, thus
affecting the conjunction locations, and cluster seeds may be
quite large for rapidly spreading fires, thus increasing the proba-
bility of conjunction with a chance lightning strike. Second, it is
possible that a lightning strike occurred within the perimeter of
a human ignited fire. For example, the strong winds that accom-
pany thunderstorms can down power lines which in turn provide

an ignition source, resulting in a fire classified as human-caused.
Lightning strikes may well coincide with the ignition locations
of such fires.
Despite its limitations, the dataset generated in this study is

the only national scale analysis of lightning fire activity con-
ducted in a consistent manner, and reveals where and when
lightning fires occur. As such it sets the stage for research into
the driving factors of lightning fire occurrence and dynamics
and for the identification of high risk areas [35], [45], [46]. Both
lightning fire patterns and identification of high fire risk areas
have widespread application and utility for fire management.
To conclude, we developed, tested, and applied a novel

approach to identify lightning fire patterns across broad spa-
tial scales and at fine temporal scales. We found that the
method performed moderately well in identifying broad scale
spatiotemporal patterns of lightning fire activity in the con-
terminous United States despite the inherent limitations that
emerge from the nature of MODIS active fire data. Given the
global coverage of MODIS data, coupled with the availability
of lightning detection networks in other regions of the world
[18], it may be possible to conduct this analysis in other coun-
tries as well. In areas with insufficient data about lightning
fire activity, and in remote areas where fires burn without
human intervention (or even detection), this approach could
provide a basis for building a fire record in lieu of ground-based
fire reports. Results from such investigations could facilitate
additional studies to enhance our understanding of the climatic
driving forces behind broad scale lightning fire activity.
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