
1 23

Landscape Ecology
 
ISSN 0921-2973
Volume 31
Number 2
 
Landscape Ecol (2016) 31:415-430
DOI 10.1007/s10980-015-0257-6

The relative impacts of vegetation,
topography and spatial arrangement on
building loss to wildfires in case studies of
California and Colorado

Patricia M. Alexandre, Susan I. Stewart,
Miranda H. Mockrin, Nicholas S. Keuler,
Alexandra D. Syphard, Avi Bar-Massada,
et al.



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media Dordrecht. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



RESEARCH ARTICLE

The relative impacts of vegetation, topography and spatial
arrangement on building loss to wildfires in case studies
of California and Colorado

Patricia M. Alexandre . Susan I. Stewart . Miranda H. Mockrin .

Nicholas S. Keuler . Alexandra D. Syphard . Avi Bar-Massada .

Murray K. Clayton . Volker C. Radeloff

Received: 14 January 2015 / Accepted: 29 July 2015 / Published online: 18 August 2015

� Springer Science+Business Media Dordrecht 2015

Abstract

Context Wildfires destroy thousands of buildings

every year in the wildland urban interface. However,

fire typically only destroys a fraction of the buildings

within a given fire perimeter, suggesting more could

be done to mitigate risk if we understood how to

configure residential landscapes so that both people

and buildings could survive fire.

Objectives Our goal was to understand the relative

importance of vegetation, topography and spatial

arrangement of buildings on building loss, within the

fire’s landscape context.

Methods We analyzed two fires: one in San Diego,

CA and another in Boulder, CO. We analyzed Google

Earth historical imagery to digitize buildings exposed

to the fires, a geographic information system to

measure some of the explanatory variables, and

FRAGSTATS to quantify landscape metrics. Using

logistic regression we conducted an exhaustive model

search to select the best models.

Results The type of variables that were important

varied across communities. We found complex spatial

effects and no single model explained building loss

everywhere, but topography and the spatial arrange-

ment of buildings explained most of the variability in

building losses. Vegetation connectivity was more

important than vegetation type.

Conclusions Location and spatial arrangement of

buildings affect which buildings burn in a wildfire,

which is important for urban planning, building siting,

landscape design of future development, and to targetElectronic supplementary material The online version of
this article (doi:10.1007/s10980-015-0257-6) contains supple-
mentary material, which is available to authorized users.
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fire prevention, fuel reduction, and homeowner edu-

cation efforts in existing communities. Landscape

context of buildings and communities is an important

aspect of building loss, and if taken into consideration,

could help communities adapt to fire.

Keywords WUI � Building loss � Wildfires �
FRAGSTATS � Logistic regression � Best-subsets

Introduction

Wildfires are an integral part of many terrestrial

ecosystems (Pausas and Keeley 2009), but in a

changing climate, wildfires are becoming more fre-

quent, extensive, and destructive (Pechony and Shin-

dell 2010; Brotons et al. 2013). As houses are built in

or near wildlands, and the wildland urban interface

(WUI) continues to grow (Radeloff et al. 2005;

Hammer et al. 2009b), future wildfires may cause

catastrophic losses of property, and sometimes life

(Karter 2010). However, when fire occurs, typically

not all houses burn, raising the question, what

determines which houses burn? In most cases, there

will be multiple factors at play, ranging from building

materials to the surroundings of a house. What is not

clear though is the relative importance of factors such

as vegetation, topography, and the spatial arrangement

of buildings.

Several recent pieces of legislation, including the

National Fire Plan and the Healthy Forest Restoration

Act, were at least partly motivated by the goal to

reduce fire risk in the WUI (Radeloff et al. 2005;

Stewart et al. 2007, 2009; Hammer et al. 2009a). The

need to reduce fire risk arises because the social,

economic, and ecological losses from wildfire were

and still are mounting, despite major fire prevention

and suppression efforts (Syphard et al. 2008). This is

why the protection of homes and lives is a main

objective of wildland fire agencies across the United

States, with widespread efforts to treat fuels, and some

examples of programs to raise community awareness

and preparedness. Landscape context and the location

and spatial arrangement of buildings may be other

important factors to consider though when aiming to

reduce fire risk, especially when new housing devel-

opments are planned, and our study was designed to

investigate how important these factors are.

Vegetation greatly affects wildfire behavior and is

thus a main focus of wildfire prevention efforts

(Andreu et al. 2013; Stevens et al. 2014; Kennedy

and Johnson 2014). In addition to vegetation, topog-

raphy influences the spatial variability of fuels and the

biophysical conditions that determine fire spread,

intensity and duration (Dillon et al. 2011). Topogra-

phy influences fire behavior as well as vegetation

distribution and productivity (Barbour et al. 1999), by

affecting energy and water balances that control

vegetation development, and hence the amount of

biomass that can become fuel when sufficiently dry

(Dillon et al. 2011). Elevation, aspect, latitude, and

topographic position all influence microclimatic con-

ditions, such as temperature, precipitation, direct solar

radiation, wind exposure, etc., which in turn influence

the moisture content of fuel (Dillon et al. 2011). Type,

spatial pattern and distribution of vegetation deter-

mine the probability of fire ignition, fire spread rate

and intensity, and ultimately, the type of vegetation

that will regenerate after the fire (Marlon et al. 2012).

Indirectly, topography can affect ignition probability

because steep slopes, ridge tops, and south-facing

slopes are all characterized by drier fuel conditions

(Haire and McGarigal 2009). Weather conditions can

strongly affect fire behavior. Humidity and tempera-

ture determine the rate at which fuels dry (Westerling

et al. 2006; Finney et al. 2010), and wind also dries

fuels, provides the fire with oxygen, and governs fire

direction and spread rate (Bessie and Johnson 1995).

However, neither fire spread data nor weather data was

available at scales fine enough to determine the

weather condition of a given building at the exact

time it was hit by a fire, making it ill-suited to the scale

of our analysis.

While vegetation, topography, and weather influ-

ence fire occurrence and behavior, these factors are not

the only reason why some buildings burn within the

perimeters of a fire and others do not. Factors related to

the building themselves are also important, including

building location and the spatial arrangement of

buildings (Gibbons et al. 2012; Syphard et al. 2012).

The probability that a building is lost is highest in

small, isolated building clusters with low to interme-

diate building density and few roads (Bar-Massada

et al. 2009; Syphard et al. 2012; Maranghides et al.

2013). What is unclear though is the relative impor-

tance of vegetation and building location to the

probability that a building will be lost when a wildfire
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occurs, and how much this relative importance varies

by setting.

There are several reasons why it is important to

understand which buildings are likely to be lost if a fire

occurs, and especially which roles the location and the

spatial patterns of buildings play. Understanding

where buildings are more likely to be lost is important

when planning future development (Syphard et al.

2013). If there are ways to place new buildings so that

the chances of loss to fire are reduced, then that could

be one important step towards more fire-adapted

communities. Knowing where buildings are most

likely to burn is also important for established

communities because this information can inform

mitigation efforts. For example, a building in a higher-

risk location may require a larger defensible space

than one in a lower-risk area.

Ultimately, all mitigation strategies have strengths

and weaknesses, and no single mitigation strategy will

suffice to stem the rise in the number of buildings lost to

wildfire. Vegetation management aimed at removing

biomass to reduce fire intensity and risk (Agee and

Skinner 2005) can be highly effective in the short run,

but requires large and recurring investments of time and

money. Furthermore, vegetation management can have

negative ecological impacts, and may not be effective

in some ecosystem types, or for fires that occur under

severe weather conditions (Merriam et al. 2006;

Syphard et al. 2011; Moritz et al. 2014). Nonetheless,

the U.S. National Fire Plan (NFP), which aims to reduce

the risks of catastrophic wildland fire to communities

(USDA 2007), is focusing resources on fuel reduction

efforts, especially in the WUI (Husari et al. 2006;

Schoennagel et al. 2009).

In addition to fuel reduction efforts, mitigation

actions available to homeowners and legislators (for

new construction) include the use of fire resistant

building materials to limit fire spread and building

ignitions (Cohen and Butler 1998; Cohen 2000;

Nowicki and Schulke 2002; Gude et al. 2008). The

combination of the buildings’ exterior materials with

its exposure to flames and firebrands ultimately

determines its likelihood of ignition (Cohen 2000).

Wildfire cannot ignite buildings unless their surround-

ings supply the necessary heat from flames of adjacent

burning materials, such as firewood piles, flammable

vegetation, neighboring buildings, or firebrands (Co-

hen 2000; Nowicki and Schulke 2002). Building

materials are also important. As an extreme example, a

concrete bunker would not ignite during a wildfire,

while a building with a wooden roof could ignite

without any flames in its vicinity due to firebrands

(Cohen 2000; Quarles et al. 2010). In sum, a building’s

ignition potential during a wildfire is determined by

the characteristics of its exterior materials, the char-

acteristics of the surroundings within 30 m (i.e., the

home ignition zone (Cohen 2008; Syphard et al. 2014),

and the occurrence of fire brands, which can travel up

to 2500 m (Cohen 2000). This means that a variety of

actions to manage building materials and residential

lots is necessary to reduce fire risk.

In addition, current wildfire policy recommendations

are urging work at the level of homeowners and

throughout a community to enact multiple mitigation

strategies and create fire-adapted communities (e.g.,

Schwab and Meck 2005), and such efforts may hold

promise over the long term. However, choosing among

potential management actions, requires knowledge of

which factors determine building loss and how their

relative importance might vary with site characteristics.

Our goal was to understand the effects of vegeta-

tion, topography and spatial patterns of buildings on

the probability of building loss when a wildfire occurs.

Furthermore, we were interested to see how much the

relative importance of these variables differs among

landscapes and communities.

Methods

Study areas

We analyzed two fires from two ecoregions in the US

where fires are frequent and building losses have been

high in recent years: the Cedar fire, which occurred in

San Diego County, California in October 2003, and

the Fourmile Canyon fire, which occurred in Boulder

County, Colorado in September 2010.

Most of California has a Mediterranean climate,

and major metropolitan areas are juxtaposed with

highly flammable ecosystems (Syphard et al. 2009).

The dominant vegetation types are coastal sage scrub,

chaparral, oak woodland and oak forest, and at higher

elevations, pine forest (CDF 2003). The WUI fire

problem is particularly critical in southern California,

where the highest losses of property and life from

wildfires in the US occur, and 400 buildings are lost

every year on average (Calfire 2000; Alexandre et al.
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2015). San Diego is a major, growing city in a

particularly fire prone area. Its Mediterranean climate

of cool, wet winters and long, dry summers creates dry

fuels, and the autumnal, adiabatic Santa Ana wind can

result in severe fire weather. The Cedar fire started

near San Diego in the afternoon of October 25th 2003

when a lost hunter set a fire to signal for help (CDF

2003). It burned for 10 days, during which time it

covered 110,579 ha, claimed the lives of 13 civilians

and one firefighter, injured 91 people, and destroyed

more than 2500 buildings (Fig. 1).

Fire regimes in Colorado are influenced by the El

Niño-Southern Oscillation (ENSO), which drive year-

to-year variability in moisture, with dry conditions

linked to reduced amplitude of the ENSO (Kitzberger

et al. 2001). In addition, the negative, cool phase of the

Pacific Decadal Oscillation (PDO) is sometimes asso-

ciated with increased drought in the southern Rockies

when coupled with the positive (warm) phase of the

Atlantic Multidecadal Oscillation (MDO) (Sibold and

Veblen 2006). These broad-scale climate patterns can

cause severe droughts resulting in conditions in which

Fig. 1 Cedar Fire perimeter

with the three communities,

Crest, Julian and Poway, and

their affected buildings in

San Diego, California, 2003
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large fires can occur (Sibold and Veblen 2006).

Dominant vegetation types are ponderosa Pine (Pinus

ponderosa), ponderosa pine/juniper (Juniperus spp.),

and Douglas-fir (Pseudotsugamenziesii)/ponderosa

pine forests (Graham et al. 2012). Between 2006 and

2011, Colorado lost 476 buildings to wildfire (Graham

et al. 2012). Boulder, Colorado, is a medium sized city

located in the Northern Colorado Front Range, where

the Rocky Mountains meet the Great Plains. The

Fourmile fire started on the morning of September 6th

2010 in the Rocky Mountain Front Range adjacent to

Boulder under dry conditions and steady winds. It was

active for 11 days, during which time it covered

2307 ha and destroyed 331 buildings, a statewide

record number at that time (Fig. 2).

Data

The probability of building loss due to wildfire is

potentially affected by several predictor variables

operating at different spatial scales. We measured all

variables at one of three spatial scales:

Fig. 2 Fourmile Fire

perimeter and affected

buildings in Boulder,

Colorado, 2010
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(1) The building scale, where we derived variables

at the location of a building, or averaged within

30 m of each building (30 m is the distance

from a heat source beyond which a building is

not likely to ignite;(Cohen and Butler 1998;

Cohen 2000; Nowicki and Schulke 2002; Gib-

bons et al. 2012);

(2) The neighborhood scale, where we considered

buildingswithin 200 mof each other as part of the

same neighborhood (Syphard et al. 2007a); and

(3) The landscape scale, defined as the area within

2500 m of each building, where we calculated

landscape metrics. The 2500 m distance is the

approximate distance up to which wind might

carry an ember or fire brand during a fire event

(Cohen 2000). The exact distance will depend

on wind conditions at the day of the fire.

Building data

We used Google Earth’s historical imagery to collect

spatially explicit data on building loss due to wildfires

(Fig. 3), where we distinguished buildings that were

destroyed from those that did not burn. For the Cedar

fire, we digitized all the buildings within the fire

perimeter (USDA 2011) from Google Earth imagery

before and after the wildfires. We digitized a total of

15,543 buildings, of which 1715 were destroyed. We

considered a building to be destroyed when it burned

to the ground and was no longer standing.We were not

able to assess buildings that were damaged by the fire,

for example by smoke damage or partial siding melt.

We considered all buildings that were still standing

after the fire as ‘‘surviving buildings.’’

All the buildings inside the Fourmile fire were

digitized by Boulder County and are available online

(Boulder County Colorado 2015). A total of 1122

buildings were digitized, and 174 residential buildings

plus 157 accessory buildings were destroyed by the fire.

Vegetation data

We analyzed land cover data from the National Land

Cover Dataset (NLCD2006, 30-m spatial resolution,

Fry et al. 2011) and reclassified the land cover types as

highly flammable, flammable, or non-flammable (On-

line Appendix 1). Vegetation alone does not constitute

a fuel model and information on different vegetation

types does not provide the same amount of informa-

tion with regards to fire behavior as fuel models do.

Fire behavior generally varies according to vegetation

type and we used vegetation as a proxy for potential

fuels. The two most extensive NLCD classes inside

both fire perimeters were Evergreen forests (42), and

Shrub/Scrub (52). Evergreen forests and shrubs differ

in terms of fire behavior, but both can support intense

fires that can produce firebrands and ignitions far

ahead of the fire front. Grassland areas tend to be

highly flammable, especially in the dry season, and as

such may exhibit fires that lead to home ignition

Fig. 3 Example of Google Earth imagery before and after the Fourmile Fire in Colorado in 2010
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(Knapp 1998; Mell et al. 2007). We therefore classi-

fied Evergreen Forest, Mixed forest, Shrub/Scrub, and

Grassland/Herbaceous classes as highly flammable.

Deciduous Forest, Pasture/Hay, and Crops are vege-

tation classes that can support fire spread in some

seasons, but because hay and crop harvest occurs

typically before moisture levels drop, and therefore are

less likely to produce a fire that will ignite a building,

we classified them as flammable. We classified the

remaining NLCD classes as not flammable due to their

lack of vegetation or because their moisture content is

too high to sustain a fire.

At the landscape level, we calculated landscape

metrics based on the reclassified NLCD and the

program Fragstats (McGarigal et al. 2012). The

landscape metrics provided a measure of fuel config-

uration and connectivity in the area surrounding each

building, which are important factors for fire occur-

rence and spread in the vicinity of buildings. We

calculated two landscape metrics within 2500 m from

each building: the Contagion Index (CONTAG) and

Connectance Index (CONNECT). In addition, we

calculated the percentage of Land (PLANDi) that each

class occupied and the total number of patches for each

class (NPi—see Online Appendix 2 for definitions).

In addition to the NLCD, we collected the Existing

Vegetation Type (EVT), and Fuel Characteristic

Classification System Fuelbeds (FCCS), at the build-

ing level, from LANDFIRE version 1.0.5 (http://www.

landfire.gov) as proxies for the flammable vegetation

and fuels aroundeachbuilding.EVT represents vege-

tation conditions around the year 2001, i.e., before

either fire occurred. EVT values are calculated using

several sources of information, including field data,

elevation, Landsat imagery, NLCD, and biophysical

gradient data, and are widely used as proxies for fuel in

several other LANDFIRE fuel models and fire

behavior models (http://www.landfire.gov). FCCS

define a fuelbed as the inherent physical characteris-

tics of fuel that contribute to fire behavior (Riccardi

et al. 2007). Fuelbeds represent a wide range of fuel

characteristics in six horizontal fuel layers called strata

(Ottmar et al. 2007). Strata include canopy, shrub,

non-woody vegetation, woody fuel, litter/lichen/moss,

and ground fuel. Each stratum is further divided into

16 categories and 20 subcategories to represent the

complexity of wildland and managed fuel (http://

www.landfire.gov). We were interested in knowing

which of these vegetation-related variables were most

strongly related to building loss, and thus most useful

for future modeling of building loss to fire.

Topographic data

Topographic variables that affect fire behavior include

elevation and aspect, which affect moisture gradients,

and topographic features like narrow valleys or steep

slopes, which influence fire spread. Topography also

affects vegetation distribution and productivity (Bar-

bour et al. 1999) because it affects energy and water

balances (Dillon et al. 2011), and therefore precipita-

tion, runoff, temperature, wind and solar radiation

(Daly et al. 1994).

We included several topographic variables, includ-

ing elevation, slope, topographic position index (TPI),

and southwestness derived from aspect (Syphard et al.

2007b). Slope and elevation were acquired from

LANDFIRE and are derived from the National

Elevation Dataset (NED, ned.usgs.gov, verified on

01/06/2015). LANDFIRE elevation data has a 30-m

resolution and covers the entire United States (U.

S. Geological Survey 2013) We also used the Digital

Elevation Model (DEM) from LANDFIRE to calcu-

late the topographic position index (TPI) using an

algorithm that defines standardized threshold values

for the difference between a cell elevation value and

the average elevation of the cells around that cell

measured in standard deviations from the mean

(Jenness 2006). Topographic position is a categorical

variable that refers to landscape position (i.e., valley,

lower slope, gentle slope, steep slope, upper slope,

ridges). The algorithm results in a categorical raster

that contains values between 1 and 6 to represent the

topographic position:

1. Valley: TPI B -1 SD

2. Lower Slope: -1 SD\TPI B -0.5 SD

3. Flat Slope:-0.5 SD\TPI\ 0.5 SD, Slope B 5�
4. Middle Slope: -0.5 SD\TPI\ 0.5 SD,

Slope[ 5�
5. Upper Slope: 0.5 SD\TPI B 1 SD

6. Ridge: TPI[ 1 SD

While weather also affects fire behavior, we were

not able to include weather data in our analysis

because, neither fire spread data nor weather data was

available at scales fine enough to determine the

weather conditions of a given building at the exact
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time it was hit by a fire, making it ill-suited to the scale

of our analysis.

Spatial arrangement of buildings

To quantify the spatial pattern of buildings, we

analyzed spatial relationships among individual build-

ings and the arrangement of buildings within clusters.

Clusters were created by placing a circular radius of

100 m around each building. Overlapping circles were

merged to become part of the same cluster. Clusters

defined the Neighborhood level of our analyses

(Fig. 4). For each cluster we calculated total area,

total number of buildings, building dispersion (Eq. 1),

and building density (Eq. 2).

Building dispersion

¼ st dev of the dist: among buildings within a cluster

mean dist: among buildings within a cluster

ð1Þ

Building density

¼ number of buildings within a cluster

cluster area ðhaÞ
ð2Þ

We also calculated the distance to the edge of the

nearest neighboring cluster and the closest building,

and the distance from each individual building to the

edge of the cluster (Fig. 4), based on research

indicating that buildings in the interior of a cluster

are less susceptible to wildfire than those at its edge

(Syphard et al. 2012; Maranghides et al. 2013). At the

Building level we counted the number of buildings

within 40 m of each building (Fig. 4). For a complete

list of all the variables used in the models, see Table 1.

Statistical analyses

We analyzed all data with the statistical software R (R

Core Team 2014). We performed exploratory analysis

of the data by plotting scatterplots and calculating

summaries. Our response variable was whether a

building was destroyed by fire or survived, and hence a

binary variable. Thus, we selected logistic regression

to model the relationships between the probability of

building loss as a function of our predictor variables

(Hosmer and Lemeshow 2000).

In our preliminary statistical analyses, we param-

eterized a model for the entire Cedar fire perimeter,

based on all the buildings within the perimeter (total of

13,543 buildings). However, the semivariograms

showed spatial patterns indicating the need to param-

eterize models for sub-regions the Cedar fire. Simi-

larly, when we mapped the residuals, there was strong

evidence of spatial clustering. We therefore split the

California study area into three separate communities

within the perimeter of the Cedar fire: Crest, Julian,

and Poway; and analyzed them separately (Fig. 1).

This left us with three separate models for which the

autocorrelation conformed to a more typical and more

easily modeled form that could be adequately handled

with a generalized linear mixed models (GLMMs),

using penalized quasi likelihood (PQL), and one

model for the Fourmile fire as a whole.

We conducted model selection based on an exhaus-

tive search of all possible combinations of predictor

variables, selecting up to seven of them per model, and

selected the best models based on the Bayesian

Fig. 4 Example of clusters that were created using a radius of

100 m; Cluster 1: example of how the buildings within 40 m

were calculated. The two buildings on the left would have one

building within 40 m each, while the building on the right would

have zero buildings. Cluster 2: examples of how distance to the

edge of cluster, distance to the nearest building and distance to

the nearest cluster were calculated
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Information Criterion (BIC) (Schwarz 1978), and the

single best for each community. We conducted the

search with the R packages bestglm (McLeod and Xu

2011) when possible, and glmulti (Calcagno 2013)

when the number of explanatory variables was larger

than 32. In this first set of variables, we did not account

Table 1 Variables used in the models, their meaning and sources

Response variable: destroyed (1) versus survived (0)

Level of analysis Variable Description Source

Building level

(40 m radius)

Vegetation typeB Existing Vegetation Type, represents

the species composition currently

present at a given site

LANDFIRE EVT (http://www.

landfire.gov/NationalProduct

Descriptions21.php)

Fuel characteristic

classification system

fuelbedsB

The fuel characteristic classification system

fuelbeds (FCCS) layer describes the

physical characteristics of a relatively

uniform unit on a landscape that represents

a distinct fire environment. FCCS provides

standardized descriptions of fuelbeds and

fire hazard

LANDFIRE FCCS (http://www.

landfire.gov/NationalProduct

Descriptions25.php)

Land cover classB See Online Appendix 1 for details

on cover classes

NLCD 2006 or 2001

ElevationB Digital elevation model, 30 meters

resolution

LANDFIRE DEM (http://www.

landfire.gov/NationalProduct

Descriptions7.php)

SlopeB Slope calculated in degrees Derived from DEM

Topographic positionB 6 Classes, extansion tool on ArcMap Jenness 2006

SouthwestnessB Create a new field and calculate the

cosin(ASP) in ArcMap

Calculated by us

Buildings within 40 m

radiusB
Derived from digitized buildings Calculated by us

Cluster level

(cluster—groups of

buildings that are

within 100 m)

Building densityC Number of buildings within a cluster

divided by the cluster area

Calculated by us

Cluster sizeC Cluster area (m2) Calculated by us

Building dispersionC Standard deviation of the distance among

buildings within a cluster divided by the

mean distance among buildings within

the cluster

Calculated by us

Number of buildings

inside clusterC
Derived from digitized buildings Calculated by us

Distance to edge of

clusterC
Derived from digitized buildings Calculated by us

Distance to nearest

buildingC
Derived from digitized buildings Calculated by us

Distance to nearest

clusterC
Derived from digitized buildings Calculated by us

Landscape level

(radius of 2500 m)

Percentage of

land/classL
See Online Appendix 2 for detailed

description

FRAGSTATS

Number of

patches/classL
FRAGSTATS

Contagion IndexL FRAGSTATS

Connectance IndexL FRAGSTATS

Superscripts B building, C cluster and L landscape are used with variable names throughout tables and text to denote the level of

measurement
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for spatial autocorrelation, and therefore we refer to

these models as the ‘non-spatial models.’

We checked for spatial autocorrelation in the

residuals by plotting semivariograms (R package

geoR, Ribeiro and Diggle 2001) for the top model in

each community (see supplementary material).

Because we found evidence of spatial autocorrelation

in the residuals of the models for all four communities,

we used generalized linear mixed models (GLMMs),

using penalized quasi likelihood (PQL), to account for

spatial autocorrelation (R package nlme; (Pinheiro

et al. 2014). Hereafter we shall refer to these as the

‘spatial models.’ Since the BIC cannot be used to

assess the fit of a GLMM based on PQL, (PQL is not a

true likelihood), we incorporated spatial autocorrela-

tion only into the top non-spatial model for each

community and applied backward selection to remove

extraneous variables (p-values higher than 0.05 were

excluded).

To measure the discriminatory ability of both the

spatial and non-spatial models, we calculated the area

under the curve (AUC) of the receiver operating

characteristic (ROC) curve (R package ROCR, (San-

der and Lengauer 2005). In the case of the spatial

models, we calculated the AUC based on the fixed

effects coefficients, since there is no straightforward

way to calculate the AUC for models with random

effects. This means that the AUC values for the spatial

models are only an approximation.

Results

Our initial list of variables included 23 potential

explanatory variables and we were able to reduce it to

eight variables for all four communities. Our goal was

to understand the effect of vegetation, topography and

spatial arrangement of buildings on the probability of

building loss to wildfire. Hence we looked at each type

of variable and their relative impact on building loss.

Given that our models are the results of an

exhaustive model search methodology using logistic

regression with spatial components, there is no

meaningful way to define variance explained by each

variable. However, in such a search the top model is

generally a good representation of the variables’

importance, and in our case identifies which variables

are most relevant in explaining building loss.

Vegetation variables

We included seven variables related to vegetation in

our analysis: vegetation typeB, land cover classB, fuel

characteristic classification system fuelbedsB, percent-

age of highly flammable vegetation within 2500 mL,

number of patches for each class within 2500 mL,

contagion index of the landscape within 2500 mL, and

connectivity of the landscape within 2500 mL. Vege-

tation-related variables were part of the best non-

spatial and spatial models for three of the four

communities.

Percentage of highly flammable landL was present

in both spatial and non-spatial models in Boulder, and

in the non-spatial model of the Crest community

(Table 2). In both Boulder and Crest communities, the

probability of building loss given a wildfire increased

with higher percentages of highly flammable land

surrounding the buildings.

ContagionL was present in the non-spatial model

for Boulder, but not in the spatial model and it had

negative signal, meaning that lower contagion values

for the landscape around the building represent higher

risk of building loss (Table 2).

ConnectivityL was present in both the best spatial

and the best non-spatial models of the Julian commu-

nity, with higher connectivity values representing

higher risk of building loss (Table 2).

Number of patches of highly flammable landL was

in both the spatial and non-spatial models of the

Poway community, with a smaller number of patches

of highly flammable land representing higher risk for

building loss (Table 2).

It is noteworthy that all the vegetation-related

variables that were included in our best spatial models

were landscape-level variables (Table 3).

Topography variables

We included four variables related to topography in

our analysis: elevationB, slopeB, topographic positionB

and southwestnessB. ElevationB, topographic position

indexB, and slopeB were part of the best non-spatial

models for three of four communities (Table 2). In the

Cedar fire, elevationB was important in non-spatial

models of two of the three communities (Tables 2 and

3). In the Crest community, the probability of building

loss was higher for buildings located at higher

elevationsB and on steeper slopesB.
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Spatial-arrangement of buildings

Spatial-arrangement variables were included in the

final spatial models of two of the four communities

analyzed (Table 3). We included in our analysis

eight variables related to spatial arrangement of

buildings, and six of those variables were present in

the non-spatial models for all communities. Three

out of the eight variables were present in the spatial

models for two communities: number of buildings in

the clusterC, building densityC, and cluster sizeC.

However, the results varied from one community to

another, and what was selected in the model for one

community was typically not included in models for

the other. These results highlighted the importance

of spatial arrangement since it was the most preva-

lent group of variables in both spatial and non-

spatial models. In the Julian community, the prob-

ability of building loss given a wildfire was greater

when the cluster sizeC was smaller and when there

was a larger number of buildings within a cluster. In

the Poway community, however, the probability of

building loss was greater when building densityC

was lower.

Table 2 Coefficients, standard errors, and p-values for the top model, with (glmmPQL) and without (glm) spatial components, for

all communities

GLM glmmPQL

Coefficient SE p value BIC* AUC Coefficient SE p value AUC

Boulder, CO

Intercept -249.30 33.14 p\ 0.001 1279 0.69 -119.61 27.75 p\ 0.001 0.66

ElevationB 0.01 0.00 p\ 0.001 0.01 0.00 p\ 0.001

Distance to edge clusterC -0.02 0.01 0.002 – – –

Contagion IndexL -0.54 0.12 p\ 0.001 – – –

Percentage of highly flammable land 2.92 0.43 p\ 0.001 1.09 0.26 p\ 0.001

Crest, San Diego, CA

Intercept -834.70 143.00 p\ 0.001 1075 0.79 -10.08 2.05 0.00 0.73

ElevationB 0.01 0.00 p\ 0.001 0.01 0.00 0.00

SlopeB 0.11 0.02 p\ 0.001 0.07 0.02 0.00

TPI—top RIDGESB -0.68 0.17 p\ 0.001 – – –

Buildings within 40 mB -0.39 0.11 p\ 0.001 – – –

Building densityC -1.10 0.32 p\ 0.001 – – –

Percentage of highly flammable landL 8.16 1.42 p\ 0.001 – – –

Percentage of non-flammable landL 8.44 1.47 p\ 0.001 – – –

Julian, San Diego, CA

Intercept -1.34 0.35 0.043 2623 0.75 -2.64 0.43 p\ 0.001 0.72

ElevationB 0.00 0.00 p\ 0.001 – – –

Buildings within 40 mB 0.17 0.03 p\ 0.001 – – –

Cluster sizeC -0.01 0.00 p\ 0.001 -0.01 0.00 0.038

Number of buildings in the clusterC 0.01 0.00 p\ 0.001 0.00 0.00 0.033

Distance to nearest clusterC 0.00 0.00 0.009 – – –

Connectance indexL 0.31 0.04 p\ 0.001 0.25 0.06 p\ 0.001

Poway, San Diego, CA

Intercept -0.81 0.27 0.003 294 0.78 -0.81 0.26 0.002 0.78

Building densityC -0.82 0.24 p\ 0.001 -0.82 0.23 p\ 0.001

Number of patches of highly

flammable landL
-0.04 0.01 p\ 0.001 -0.04 0.01 p\ 0.001

* BIC values showed here are the absolute values and were used solely to rank the models and not for comparisons among models
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Discussion

When modeling which buildings burned within a fire

perimeter, we found that variables describing the

landscape—vegetation connectivity, topography, and

the spatial arrangement of buildings—were present

more frequently in the models than were the variables

measuring more common targets of fire risk mitiga-

tion, such as vegetation type and vegetation cover.

We based our choice of variables in part on the

work of Cohen and others whose investigation of

building ignition and building loss to wildfires (Cohen

and Butler 1998; Cohen 2000; Nowicki and Schulke

2002; Gibbons et al. 2012; Syphard et al. 2012) has

strongly influenced recommendations made to home-

owners and fire managers regarding structure protec-

tion and risk mitigation. We included variables similar

to those previously found to be important in building

ignition, though we measure these variables and assess

relationships among them at the landscape scale, to

clarify which contribute the most to the risk of

building loss across a residential landscape.

Vegetation

Vegetation was present in models for three commu-

nities. Interestingly, it was not the type of vegetation

that was present, but rather the amount and the

connectivity of this vegetation that mattered most.

These results may be due to the fact that the vegetation

type was fairly uniform, in particular in the Fourmile

fire where the vegetation cover was either Evergreen

forest or shrub/scrub. The degree to which communi-

ties were different in terms of the factors determining

building loss further underlines the importance of

landscape factors in the risk of building loss.

The vegetation-related measures that we included

(e.g., land cover, fuel beds, and vegetation type), and

their consistent relatively lower importance demon-

strated that once a fire starts and there is adequate

vegetation to carry the fire, other factors become more

important determinants of building loss. Vegetation

and fuel is related to fire probability and fire spread and

therefore fire exposure (Whitlock et al. 2003; Marlon

et al. 2006), but less to building loss. The presence of

vegetation near the building was not a strong predictor

in our models of the likelihood that a building would

be lost to the fire.

Topography

Across all locations and models, topographic charac-

teristics such as elevation and slope, were selected in

the model fitting. Topography can affect the outcome

of a wildfire directly or indirectly. Directly, because

topography influences fire spread and behavior.

Steeper slopes decrease the angle between the flame

and the new fuel source, drying fuels faster and

therefore, moving up the hill faster (Dupuy 1995), and

indirectly because buildings located at higher places

are typically harder to access and therefore to defend

(e.g. The Valparaiso fire in Chile, Associated Press

2014). The combination of faster moving flames with

difficult access often results in building loss and was

likely the reason why elevation was an important

variable in the Fourmile fire.

Spatial arrangement of buildings

Spatial arrangement of buildings, including cluster

size, number of buildings in the cluster, and building

density, was also consistently important in our models.

Table 3 Variables present in the top models that account for spatial autocorrelation for each community

Communitiy Vegetation Topography Spatial arrangement AUC for

glm

AUC for

glmmPQL*

Boulder Percentage of highly

flammable landL
ElevationB 0.69 0.66

Crest ElevationB SlopeB 0.79 0.73

Julian ConnectanceindexL Cluster sizeC number of

buildings in the clusterC
0.75 0.72

Poway Number of patches of highly

flammable landL
Building densityC 0.78 0.78

* AUC for spatial models does not explicitly account for spatial autocorrelation

426 Landscape Ecol (2016) 31:415–430

123

Author's personal copy



For example, clusters with many buildings were

associated with greater probability of loss in the case

of the Julian community. This may be because burning

buildings are themselves a source of firebrands that

can be carried by the wind and ignite other buildings

(Suzuki et al. 2014). Smaller clusters with more

buildings will be denser, again increasing the proba-

bility of building-to-building ignition. However, the

model for the Poway community showed higher risk in

lower-density neighborhoods, perhaps reflecting an

unmeasured covariate such as differences in the ease

of accessibility for suppression or in the age and

building materials of different neighborhoods. Fire-

specific factors such as the time of day or sequence of

the flame front’s passage through the community

could also be important and we were not able to

consider them here (Maranghides et al. 2013).

Caveats

The relatively low AUC values suggest that factors not

included in our models may also affect building loss.

For example, construction materials (Cohen and

Butler 1998; Cohen 2000), fire suppression efforts

during the fire (Graham et al. 2012), weather condi-

tions during the fire event, and vegetation in the home

ignition zone (Cohen and Butler 1998; Nowicki and

Schulke 2002; Cohen 2008) play a role in the outcome

of wildfire events, including building loss. Due to the

scale of our analysis and reliance on satellite imagery

and remote sensing information to collect our data, it

was not possible to include these factors in the models.

We do acknowledge that wind influences how far a

firebrand can reach, which may be why buildings

closer to the edge are at greater risk under severe

weather conditions. However, we did not account for

weather because there was not enough variability in

available weather data, particularly for the Cedar fire,

which occurred under Santa Ana conditions. Further-

more, while including weather would be interesting

from a scientific perspective, it is less relevant for

community planning purposes, because weather con-

ditions during future fires are not known.

The most important variables in the Fourmile fire

were more closely related to topography and flamma-

bility of the landscape surrounding the buildings, than

in the communities in San Diego. The AUC values

were the lowest of all four communities and we can

only speculate that we missed some variables, such as

building materials, suppression efforts and pre-fire

mitigation efforts on the property by the owners.

Despite the fact that many other variables could

have been added to our initial list, we began with a

broad set of 24 variables and reduced it to a fairly

small, focused, collection of explanatory variables that

resulted in good AUC values. We see this as a

modeling success. The statistical methods used in this

study are cutting-edge when dealing with binary

dependent variables and spatial autocorrelation. As

in any modeling approach, there is always a possibility

for Type II errors and for that reason we used AUC to

assess the quality of the models by looking at both

matches and mismatches in the model estimates.

We would like to emphasize that our goal was to

understand the underlying drivers to building loss and

that we had no data that allowed us to cross-validate

the models in a different place. Therefore, we did not

try to use the models to make prediction for areas

outside our study area. We did try each model on all

other three communities and the results were always a

model with a poor performance, strengthening our

finding that the drivers are location specific and may

not apply in other WUI areas.

Management implications

The defense of buildings and the replacement of

destroyed buildings constitute a substantial portion of

the costs associated with wildland fires in the WUI

(Gude et al. 2013). Knowing where on the landscape

buildings face the most risk could focus both mitigation

and suppression efforts and inform land use planning,

urban planning, and WUI regulation. This knowledge

could also be used to expand and improve the fire risk

information available to homeowners, and to highlight

more location-specific factors (i.e., lot-related risk in

addition to building material- and landscaping-related

risk). Our findings have implications for policy makers,

urban planners and homeowners, reinforcing the

growing awareness that landscape configuration, as

modified through land use and urban planning, and

WUI building regulations, is a crucial focus for creating

fire-adapted communities.

Past land-use decisions have placed many buildings

in highly flammable areas resulting in high exposure

and therefore, vulnerability to wildfires, of both

buildings and people (Pincetl et al. 2008). Our results

support other studies (Gibbons et al. 2012; Syphard
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et al. 2012) in highlighting that the location of a

building on the landscape and in relation to other

buildings matters greatly in terms of the probability

that a building will burn when a fire occurs. This

suggests that building placement could be given more

weight when deciding which homeowners to focus on

first in community outreach programs. WUI fire

managers could prioritize reaching the owners of the

highest-risk building locations, i.e., those at higher

elevation, at the top of a ridge, in dense clusters of

buildings, or at the periphery of a neighborhood, to

make them aware that their building has a higher

probability of loss than their neighborhood as a whole

if a wildfire occurs, so that they can decide upon

mitigation steps. While targeting higher-risk areas is

currently a standard practice for community mitiga-

tion programs, such as Firewise, our study reinforces

the significance of building placementwithin high-risk

areas, and suggests it is a major risk factor.

While it is rarely feasible to alter existing devel-

opment patterns, it may be possible to reduce future

fire risk by more carefully siting new development in

high fire-risk landscapes, or steering development

away from such areas entirely, as is commonly done

by U.S. communities to reduce vulnerability to other

natural hazards such as flooding and landslides. In

addition, rebuilding after a wildfire can be an oppor-

tunity to implement newmitigation actions, incentives

and regulations such as those recommended under the

2012 International Code Council’s Wildland Urban

Interface Code, which has been added to the zoning

codes of communities across the U.S. (available at

ftp://law.resource.org/pub/us/code/ibr/icc.iwuic.2012.

html Accessed July 7, 2015) (Alexandre et al. 2015;

Mockrin et al. 2015). In this regard, our findings are

especially important for community planning and

zoning officials who want to reduce their community’s

vulnerability to fire. Similarly, land-use regulations

intended to minimize fire risk must address landscape-

level factors, including building location and

arrangement (Syphard et al. 2012), if they are to be

successful in reducing wildfire-related losses. Subdi-

vision and planned unit development requirements are

among the local regulations that directly govern the

configuration of newly-built landscapes, suggesting

these and other community-specific rules could be

targeted for change. Vegetation connectivity is the

province of landscape architects as well as landscape

maintenance services, two additional groups whose

cooperation in fire adaptation would be beneficial. Our

study suggests that there are opportunities to be

proactive about future risk by considering building

locations and vegetation connectivity when planning

new housing developments.
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