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A B S T R A C T   

Grasslands are important for global biodiversity, food security, and climate change analyses, which makes 
mapping and monitoring of vegetation changes in grasslands necessary to better understand, sustainably 
manage, and protect these ecosystems. However, grassland vegetation monitoring at spatial and temporal res
olution relevant to land management (e.g., ca. 30-m, and at least annually over long time periods) is challenging 
due to complex spatio-temporal pattern of changes and often limited data availability. Here we assess both short- 
and long-term changes in grassland vegetation cover from 1987 to 2019 across the Caucasus ecoregion at 30-m 
resolution based on Cumulative Endmember Fractions (i.e., annual sums of monthly ground cover fractions) 
derived from the full Landsat record, and temporal segmentation with LandTrendr. Our approach combines the 
benefits of physically-based analyses, missing data prediction, annual aggregations, and adaptive identification 
of changes in the time-series. We analyzed changes in vegetation fraction cover to infer the location, timing, and 
magnitude of vegetation change episodes of any length, quantified shifts among all ground cover fractions (i.e., 
green vegetation, non-photosynthetic vegetation, soil, and shade), and identified change pathways (i.e., green 
vegetation loss, desiccation, dry vegetation loss, revegetation green fraction, greening, or revegetation dry 
fraction). We found widespread long-term positive changes in grassland vegetation (32.7% of grasslands), 
especially in the early 2000s, but negative changes pathways were most common before the year 2000. We found 
little association between changes in green vegetation and meteorological conditions, and varied relationships 
with livestock populations. However, we also found strong spatial heterogeneity in vegetation dynamics among 
neighboring fields and pastures, demonstrating capability of our approach for grassland management at local 
levels. Our results provide a detailed assessment of grassland vegetation change in the Caucasus Ecoregion, and 
present an approach to map changes in grasslands even where availability of Landsat data is limited.   

1. Introduction 

Grassland ecosystems cover more than a quarter of the global land 
area (FAO, 2005), and directly support the wellbeing of more than one 
billion people (Neely et al., 2009). Most grasslands are located in arid, 
semi-arid, and sub-humid regions (UNCCD, 1994) and are subjected to a 
combination of diverse global, regional, and local scale processes, such 
as climate change (Stanimirova et al., 2019) and changes in land use 
which together results in a complex spatio-temporal pattern of grassland 

vegetation dynamics. At the global scale, many grasslands are subjected 
to degradation (Cherlet et al., 2018; IPBES, 2018; O’Mara, 2012), which 
leads to the loss of biodiversity, threats to food security, and economic 
susceptibility (IPCC, 2019; UNCCD, 2017a), but at the same time in 
other regions grassland vegetation is recovering, or ‘greening’ (e.g., de 
Jong et al., 2012; Miao et al., 2021; Munier et al., 2018). Mapping and 
understanding the dynamics of all vegetation changes in grasslands is 
instrumental to track Land Degradation Neutrality, curb climate change 
(Cowie et al., 2018; IPBES, 2018; UNCCD, 2017b) and achieve the 
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Contents lists available at ScienceDirect 

Science of Remote Sensing 

journal homepage: www.sciencedirect.com/journal/science-of-remote-sensing 

https://doi.org/10.1016/j.srs.2021.100035 
Received 16 June 2021; Received in revised form 2 November 2021; Accepted 9 November 2021   

mailto:lewinska@wisc.edu
www.sciencedirect.com/science/journal/26660172
https://www.sciencedirect.com/journal/science-of-remote-sensing
https://doi.org/10.1016/j.srs.2021.100035
https://doi.org/10.1016/j.srs.2021.100035
https://doi.org/10.1016/j.srs.2021.100035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.srs.2021.100035&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Science of Remote Sensing 4 (2021) 100035

2

Sustainable Development Goals. 
Maintaining grasslands as a natural resource requires monitoring 

aboveground green vegetation biomass and grassland composition 
combined with land use history. Grassland vegetation dynamics reflects 
the interplay between typically broad-scale natural processes and mostly 
small- and medium-scale anthropogenic changes (Cherlet et al., 2018; 
IPBES, 2018; IPCC, 2019). Each process has its own timing and length 
and can result in positive, as well as negative changes in grassland 
vegetation productivity and composition. However, analyses of grass
land vegetation dynamics are often limited to detection of long-term 
trends (≥10 years) (definition adopted after de Jong et al., 2012) at 
moderate to low spatial resolution, and lack the routine of high- to 
medium-resolution monitoring of short-term changes that is typical for, 
for example, forests (Reinermann et al., 2020). This is unfortunate, 
because grasslands are heterogeneous and short-term (<10 years) and 
small-scale changes are important aspects of grassland dynamics, and 
important for land management in need of informed and timely actions. 
For example, in regions with increasing human pressure, more frequent 
short-term droughts (De Keersmaecker et al., 2015) and temperature 
anomalies can cause small-scale short-term vegetation loss that may 
ultimately result in widespread and long-term degradation when not 
mitigated in time. Moreover, grassland monitoring that captures 
small-scale and short-term changes could support restoration efforts by 
highlighting vegetation recovery due to shifts in ecosystem functioning 
(Horion et al., 2016; Zhu et al., 2016) or changes in management and 
land use intensity (Dara et al., 2020) including optimized grazing (Miao 
et al., 2021). Consequently, monitoring short- and long-term grassland 
vegetation dynamics at medium resolution is important to optimize 
ecosystem services and to track greenhouse gas emissions and global 
carbon balance (IPBES, 2018; IPCC, 2019). 

Remote sensing is an effective approach to monitor grassland eco
systems at different spatial extents (from local to global) and temporal 
scales (e.g., Ali et al., 2016; Zhou et al., 2017). Vegetation changes in 
grasslands are frequently approximated through proxy measures of 
green vegetation biomass (e.g., Zhang et al., 2018; Zhou et al., 2017) 
calculated based on vegetation indices, such as the NDVI (e.g., Miao 
et al., 2021) or LAI (e.g., Munier et al., 2018). However, 
physically-based approaches, such as Spectral Mixture Analyses, are 
more suitable for monitoring grassland ecosystems, because they pro
vide more reliable results for sparse vegetation (Elmore et al., 2000; 
Hostert et al., 2003). Moreover, Spectral Mixture Analyses offer 
concurring insight into grassland ground cover composition and green 
vegetation productivity (a surrogate of net primary productivity), which 
broadens capacity of land monitoring (Masiliunas et al., 2021). Spectral 
unmixing of dense time series of satellite data (e.g., MODIS) allows the 
calculation of Cumulative Endmember Fractions, that is the annual sums 
of monthly ground cover fractions (Lewińska et al., 2020). This 
approach combines benefits of physically-based measurements, quan
tification of grassland ground cover and the calculation of robust annual 
estimates by summing the observation for each year (Hobi et al., 2017; 
Reed et al., 1994). 

Grassland ecosystems monitoring with remote sensing often faces 
tradeoffs between the length of the data time series, frequency of image 
acquisition, spatial coverage and spatial resolution. Regional to global 
studies typically apply trend analyses based on long time series of 
vegetation indices at coarse spatial resolution (Munier et al., 2018; G. 
Zhang et al., 2018; R. Zhang et al., 2018), or compare modelled and 
observed grassland productivity at coarse resolution (Zhang et al., 2021; 
Zhou et al., 2017). Spatially detailed studies typically analyze proxies for 
small areas (Tepanosyan et al., 2017; Wiesmair et al., 2016), or up to few 
years (Griffiths et al., 2020) (but see Dara et al. (2020)). Analyses of 
coarse-resolution satellite allow to identify ‘hotspots’ of long-term 
changes, but do not capture fine-scale processes and their drivers, 
which limits the value of broad-scale assessments for identifying sus
tainable land management strategies (Reed et al., 2011). Conversely, 
detailed analyses for small areas, are difficult to conduct for large areas. 

Medium-resolution satellite data (10–30-m) are thus the most suited to 
evaluate land management practices in grasslands (e.g., Griffiths et al., 
2020), to compare mapped vegetation changes with ground-truth and 
socio-economic data (Buenemann et al., 2011), and to evaluate grazing 
intensity or stocking capacity for each field or pasture (Ali et al., 2016; 
Reinermann et al., 2020). 

The opening of the Landsat archive (Woodcock et al., 2008) com
bined with computing advancements spurred the development of many 
novel algorithms taking advantage of long and dense time series of 
medium resolution satellite data (e.g., Kennedy et al., 2010; Verbesselt 
et al., 2010; Zhu and Woodcock, 2014). Many of the new approaches can 
identify short- and long-term changes in time series, allowing on 
in-depth analyses of vegetation dynamics. However, Landsat time series 
often suffer from data gaps due to missing acquisitions, sensor defect, 
cloud cover, cloud shadows, and snow. To overcome these data gaps, 
Landsat data can be fused with data from other sensors (STARFM; Gao 
et al., 2015; 2006), aggregated to annual maximum composites (Land
Trendr; Kennedy et al., 2010), or seasonal composites (Tindall et al., 
2012; Xie et al., 2019), or fitted to harmonic models (FF; Yan and Roy, 
2020) (CCDC; Zhu and Woodcock, 2014) (COLD; Zhu et al., 2019). Data 
compositing and harmonic curve fitting techniques can, however, 
introduce bias into vegetation change analyses, which are, due to sea
sonality, often very sensitive to the exact timing of data acquisition 
(Sonnenschein et al., 2011). Subtle intra- and inter-annual changes can 
be easily missed by both compositing and harmonic curve fitting tech
niques, which is especially concerning in grassland ecosystems, and in 
regions with dynamic land use systems (Lewińska et al., 2020). Time 
series reconstruction based on local moving windows (e.g., Chen et al., 
2004; Eilers, 2003; Schwieder et al., 2016) offer an alternative to 
compositing or harmonic curve fitting, and fill in data gaps while pre
serving local variability in the time series. 

Our main goal was to develop an approach to monitor short-term 
(<10 years) and long-term (≥10 years) vegetation changes in grass
land ground cover composition and green vegetation productivity from 
30-m resolution Landsat data. We built upon our previous development 
of MODIS-based Cumulative Endmember Fractions and advanced this 
approach further to allow for analyzing finer spatial-scale process re
gimes based on the entire Landsat time series while accounting for data 
gaps. Since Cumulative Endmember Fractions require dense (at least 
monthly) time series, we predicted missing Landsat data with a 
weighted Whittaker filter (Eilers, 2003; Kong et al., 2019; Whittaker, 
1922). Subsequently, following workflow in Lewińska et al. (2020) we 
conducted temporal segmentation with LandTrendr (Kennedy et al., 
2010) to identify location, frequency, and magnitude of changes in 
green vegetation fraction cover of three years or more. We chose 
LandTrendr due to its robustness for trajectory-based change detection 
and common application to annual data, which matched our study goal. 
For each change we quantified transitions among all ground cover 
fractions, thus recognizing shifts in grasslands green vegetation pro
ductivity and ground cover composition, herein called change path
ways. We implemented our approach by combining existing algorithms 
and methods and applying them across the Caucasus Ecoregion which 
has a large variety of grassland ecosystems, management types, and rich 
legacy of socio-economic transformation. Specifically, our objectives 
were to: i) map changes in grassland vegetation in the Caucasus Ecor
egion from 1987 to 2019, including the location, magnitude, timing, and 
change pathway of all change episodes; ii) analyze changes in grassland 
ground cover composition and green vegetation productivity at national 
and regional levels; iii) relate the observed variability in green vegeta
tion fraction to natural and anthropogenic factors (i.e., weather and 
grazing pressure, respectively); iv) test if our Landsat-based grassland 
monitoring approach can detect fine-scale spatial patterns of vegetation 
change, hence support informed land management. 
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2. Materials and methods 

2.1. Study area 

The Caucasus Ecoregion covers 580,000 km2 between the Black Sea 
and the Caspian Sea and includes two major mountain ranges of the 
Greater and the Lesser Caucasus Mountains Chains (Fig. 1). The ecor
egion is divided between territories of Armenia, Azerbaijan, Georgia, 
and parts of Iran, the Russian Federation, and Turkey. Elevation ranges 
from 28 m b.s.l. to 5,642 m a.s.l.. Average annual precipitation has a 
strong NW-SE gradient and ranges from 4,100 mm to 300 mm per year. 
The Caucasus is a global hotspot of biodiversity (Marchese, 2015), with 
many different landscapes (Zazanashvili et al., 2000), and a variety of 
grassland ecosystems (Belonovskaya et al., 2016; Zazanashvili et al., 
2000), making it a great study area to test our methods. 

Agriculture is important in the region (Holland, 2016; O’Loughlin 
et al., 2007), with a long history of pastoralism (Hovsepyan, 2015) and 
animal husbandry important for both local economy and identity 
(Neudert and Allahverdiyeva, 2009). However, the collapse of the Soviet 
Union in 1991, followed by the hardening of political borders (Armenia, 
Azerbaijan, Georgia, and the Russian Federation), socio-economic 
transformation, and a series of local conflicts, decreased population 
density in the mountains (Radvanyi and Muduyev, 2007; Vinogradova 
and Gracheva, 2018), and disrupted transhumance practices (e.g., 
Radvanyi and Muduyev, 2007), leading to more stationary grazing 
(Didebulidze and Plachtd, 2002; Wiesmair et al., 2016), and abandon
ment of some summer pastures (Vinogradova and Gracheva, 2018). 
Concurrently, growing economic demand and socio-economic reforms 
spurred a rise in livestock numbers in Azerbaijan and the northern 
Caucasus (Neudert, 2015; Neudert and Allahverdiyeva, 2009). In all 
countries but Russia, access to pastures is regulated through lease 
(Hartvigsen, 2013), which combined with limited transhumance create 
many management challenges (Neudert, 2015) and has resulted in 
overgrazing in some winter (NACRES, 2013) and summer pastures 
(Leeuw et al., 2019; Wiesmair et al., 2016). Unfavorable changes in local 
climate (Elizbarashvili et al., 2017; Shatberashvili et al., 2015) also 
increased the threat of grassland degradation (Shatberashvili et al., 
2015; Tepanosyan et al., 2017). Accordingly, the need to regulate 
grazing practices is strong (Cabinet Ministers of Azerbaijan, 2008). 
Indeed, our previous analysis based on MODIS time series showed that 
on average 9% of grasslands in the region experienced negative changes 

in grassland vegetation each year between 2001 and 2018 (Lewińska 
et al., 2020), but those analyses were limited by their coarse resolution 
(500-m), and missed trends during the 1980s and 1990s. 

2.2. Satellite data 

We analyzed the entire 1984–2019 Landsat Collection 1 Tier 1 sur
face reflectance data available in Google Earth Engine (Gorelick et al., 
2017) as of early December 2019, which was equivalent to 43,800 
scenes acquired over the Caucasus Ecoregion (paths 164 to 176, rows 27 
to 35) by Thematic Mapper (TM; Landsat 4 and 5), Enhanced Thematic 
Mapper (ETM+; Landsat 7) and Operational Land Imager (OLI; Landsat 
8). All surface reflectance data had been atmospherically corrected using 
LEDAPS (TM, ETM+ (Masek et al., 2006)) or LaSRC (OLI (Vermote et al., 
2016),), and assessed for snow, cloud and shadow contamination (Foga 
et al., 2017; Zhu and Woodcock, 2012). We removed pixels flagged as 
saturated, cloud, cloud shadow, or snow (bits 2–3, 4–6, 7–8, 9–10 in the 
‘pixel_qa’ Quality Assessment band). Finally we combined OLI with TM 
and ETM+ scenes following Roy et al. (2016). 

2.3. Ancillary data 

To focus on grasslands only, we used the land cover classifications of 
Buchner et al. (2020), and Bleyhl et al. (2017). First, we selected from 
the datasets described in Buchner et al. (2020) a pixel as ‘grassland’ if it 
was classified as ‘rangeland’ or ‘barren’ in at least 4 out of 6 time-steps 
(1987, 1995, 2000, 2005, 2010 and 2015; the 2015 classification 
adjusted producer’s accuracy is 0.77 ± 0.03 and 0.71 ± 0.15, and 
adjusted user’s accuracy is 0.89 ± 0.03 and 0.59 ± 0.14, for ‘rangeland’ 
and ‘barren’ classes, respectively). We included the ‘barren’ class into 
our grassland definition due to very sparse vegetation cover in some 
parts of the region. Our multi-temporal grassland definition was moti
vated by the long analysis period and allowed inclusion of regions that 
have extremely low vegetation cover, or were misclassified in any of the 
individual time steps. To cover the entire Caucasus Ecoregion, we used 
the 2015 land cover dataset from Bleyhl et al. (2017), and especially the 
‘rangeland’ and ‘sparse vegetation’ classes (producer’s accuracy: 0.84 
and 0.66; user’s accuracy: 0.88 and 0.72, respectively), for the areas not 
mapped by Buchner et al. (2020). 

We analyze meteorological conditions using the TerraClimate time 
series (Abatzoglou et al., 2018; University of East Anglia Climatic 

Fig. 1. Grasslands in the Caucasus Ecoregion based on Buchner et al. (2020) and Bleyhl et al. (2017) (see section 2.3.). Numbered locations are discussed in the text.  
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Research Unit et al., 2017). Based on the monthly 1984–2019 precipi
tation and evapotranspiration data at ~4 km (1/24th degree) resolution, 
we calculated SPEI3 (Standardized Precipitation-Evapotranspiration 
Index calculated at the time scale of three months) (Vicente-Serrano 
et al., 2010, 2012) using the SPEI R library (https://cran.r-project.or 
g/web/packages/SPEI). SPEI combines precipitation and evapotrans
piration, which together affect aboveground productivity in grassland 
vegetation (Wang et al., 2014), making SPEI well suited for analyses of 
vegetation dynamics (De Keersmaecker et al., 2015; Vicente-serrano, 
2007). The selected SPEI aggregation period of three months corre
sponds with the maximum time lag in the response of grassland vege
tation to meteorological conditions (Horion et al., 2012). Positive SPEI 
values indicate favorable vegetation growth conditions, whereas nega
tive values mark dry and hot spells. We summed monthly SPEI3 data for 
each year akin to the Cumulative Endmember Fractions time series (see 
section 2.4.). 

We obtained regional statistics on livestock numbers from national 
statistical offices, yearbooks and regional departments (see Table SA.1 
for references). We used FAOSTAT (FAO, 2020) statistics for livestock 
information on a national level. Finally, we digitized active shepherds’ 
camps and enclosures in three sites (6 × 9 km each) representing 
different grassland types and grazing regimes. For this, we visually 
interpreted the most recent high-resolution images available in Google 
Earth as of November 2020. We determined the activity status of each 
camp by looking for maintained buildings, tents, or dung accumulation 
(Bleyhl et al., 2019; Dara et al., 2020). 

2.4. Landsat based Cumulative Endmember Fractions 

We analyzed changes in grassland ground cover using the Cumula
tive Endmember Fractions introduced by Lewińska et al. (2020). Cu
mulative Endmember Fractions are annual sums of monthly ground 
cover fractions (e.g., soil, green vegetation, non-photosynthetic vege
tation and shade) that characterize grassland green vegetation produc
tivity (a proxy for net primary productivity), ground cover composition, 
and structure (i.e., shadow accounts, among others, on micro-shadowing 
at the sub-pixel level). Summing values by year captures the full range of 
phenology and illumination conditions (Elmore et al., 2000) and facil
itates year-to-year comparisons. 

To calculate Cumulative Endmember Fractions, we applied Spectral 
Mixture Analysis (SMA) to each Landsat scene using four endmembers: 
soil, green vegetation, non-photosynthetic vegetation, and shade (Fig. 2) 
assuming their linear combination 

ρj =
∑n

i=0
fi*ρi,j + ej (1)  

where, ρj is the reflectance in Landsat band j, fi is a fraction of end
member i, ρi,j is a spectrum of endmember i in band j, and ej is a residual 
term for band j. We applied a constrained and non-negative SMA and 
used spectra identified by Lewińska et al. (2020) (for details see ibid., 
sections 2.4 and 2.5). Next, we aggregated the resulting fraction time 
series to monthly composites selecting for each pixel image that had the 
highest green vegetation value for each month. 

Due to infrequent observations in the early years of Landsat 
(Figure SB1, SB2, and Table SB1), we started our vegetation change 
analyses in 1987. Moreover, for 2019 only January–November scenes 
were available when we conducted our analyses. For months without 
any Landsat composites, we predicted values for each endmember for 
each pixel using the Whittaker filter (Atkinson et al., 2012; Eilers, 2003; 
Whittaker, 1922) as implemented by Kong et al. (2019). The Whittaker 
filter fits a local curve while preserving the upper envelope, is compu
tationally efficient, and can handle missing observations (Eilers, 2003). 
Furthermore, unlike other time series reconstruction approaches, the 
Whittaker filter allows us to weight observations according to, for 
example, their quality. We calculated monthly inter-annual medians as 
fill-in values, and gave them a weight of 0.5, while weighting all original 
observations as 1 (after Kong et al. (2019)). All the original values in the 
time series were preserved in the final monthly time series, and missing 
months predicted based on the Whittaker filter (for details and sensi
tivity analysis see Supplement B.1.). 

Based on the complete monthly endmember fraction time series, we 
calculated Cumulative Endmember Fractions as the annual sum for each 
respective endmember 

cefiY =
∑m

m=1
fmiY (2)  

where, cefiY is Cumulative Endmember Fraction for endmember i in year 

Fig. 2. Data processing workflow including: spectral unmixing of the Landsat time series, aggregation to monthly ground cover fractions, prediction of missing 
monthly data based on the Whittaker filter, aggregation to the Cumulative Endmember Fractions (CEF), identification of vegetation changes based on LandTrendr, 
and calculation of change pathways for both short-term and long-term change episodes. The results of each processing block shown in the last row are the input data 
for the next processing block. 
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Y, fmiY is fraction for endmember i in month m and year Y. To improve 
interpretability, we rescaled all the Cumulative Endmember Fraction for 
each year to sum to 100, thus the values represented percentage share of 
each fraction. Lastly, following Lewińska et al. (2020), we combined 
non-photosynthetic vegetation and shade Cumulative Endmember 
Fractions into one cumulative fraction, hereafter ‘non-photosynthetic 
vegetation’. 

To identify multi-year change episodes in grasslands vegetation 
cover, as in Lewińska et al. (2020) we applied the LandTrendr temporal 
segmentation algorithm to the green vegetation Cumulative Endmember 
Fraction. We used default control parameters (see Table 1 of Kennedy 
et al. (2018)), but preserved all spikes, allowed up to 12 segments, and a 
one-year recovery period. We retained only those vegetation change 
episodes that were at least three years-long and where the green Cu
mulative Endmember Fraction increased or decreased by at least 20% of 
the per-pixel maximum green vegetation Cumulative Endmember 
Fraction to be conservative, and avoid including minor changes into our 
trend analyses. To account for co-registration errors and reduce the ‘salt 
and pepper’ effect, we applied a minimum mapping unit of 11 pixels 
(~1 ha). 

Finally, we calculated the change pathway for each vegetation 
change episode i.e., the transitions among green vegetation, non- 
photosynthetic vegetation, and soil fractions (Fig. 3) between the first 
and the last year of each episode. The changes approximate percentage 
point shifts in grassland green vegetation productivity and composition. 
Specifically, we identified three negative change pathways in vegetation 
cover (after Lewińska et al. (2020)), i.e., desiccation (a shift from green 
vegetation to non-photosynthetic vegetation fraction), green vegetation 
loss (a shift from the green vegetation fraction to soil fraction), and dry 
vegetation loss (a shift from non-photosynthetic vegetation to soil 
fraction); and three positive change pathways, i.e., greening (a shift 
from non-photosynthetic vegetation to green vegetation), revegetating 
green fraction (a shift from soil to green vegetation), and revegetating 
dry fraction (a shift from soil to non-photosynthetic vegetation). 

2.5. Changes in grassland vegetation cover 

We analyzed the location, magnitude, frequency, timing, and change 
pathways (see above) of all vegetation change episodes, but separated 
them into long-term (≥10 years) and short-term (3–9 years) changes. 
We evaluated the accuracy of vegetation change detection by visually 
assessing 1987–2019 time series of green vegetation Cumulative End
member Fraction for 850 samples. To do so, we used the AREA2 tool 
(available at https://area2.readthedocs.io) to design a stratified random 
sample aimed at an expected accuracy of 80% (Olofsson et al., 2014; 
Stehman, 2014). Accordingly, we distributed 250 points within 

grassland areas that had at least one green vegetation loss episode, and 
600 points within grasslands that showed no vegetation change from 
1987 to 2019. Without knowing the sampling strata, one skilled inter
preter (KEL) divided green vegetation Cumulative Endmember Fraction 
time series for each sample point into distinct segments with clear 
temporal trajectories (i.e., increase, decrease or stable). 

For any change segment, we identified years of vegetation change as 
the period from the segment’s start vertex plus one year, through the 
segments end (short- and long-term, combined, with 1988 being the first 
year with mapped vegetation change). Next, we compared the original 
LandTrendr results with the reference dataset and assessed the accuracy 
of the vegetation change detection separately for each year based on 
green vegetation loss (yes/no response) accounting for the inclusion 
probability of the validation sample (Stehman, 2014), and calculated 
error-adjusted overall, user’s, and producer’s accuracy, and the adjusted 
area of change for each year. Finally, we calculated the area of positive 
and negative changes in vegetation cover at annual basis quantifying 
contribution of short-term and long-term changes to the overall pattern 
and reported it separately for all six change pathways on the country 
level adjusting for accuracy. We decided to focus the evaluation only on 
vegetation loss because we assumed it would be the dominant process in 
the region, and implementation of the stratified random sample design 
accounting for all frequencies of vegetation loss and gain changes across 
all the years, was not feasible due to the very limited representation of 
some types of changes. 

2.6. Vegetation dynamics versus SPEI3 and livestock populations 

We assessed the effects of meteorological conditions on changes in 
green vegetation Cumulative Endmember Fraction by correlating them 
with SPEI3. We used 1987–2019 SPEI3 annual sums on pixel level, and 
rescaled the SPEI3 time series to match the 30-m resolution of Cumu
lative Endmember Fractions using nearest-neighbor interpolation. 
Independently, we used parameterized linear regression models to 
quantify response of green vegetation Cumulative Endmember Fraction 
to SPEI3 and livestock numbers. We analyzed the statistical relationship 
for entire countries (Armenia, Azerbaijan and Georgia) and for first-level 
administrative regions (for Azerbaijan we used economic regions to 
match the statistical data) to match the available statistical data. 
Consequently, we calculated average annual SPEI3 and green vegetation 
Cumulative Endmember Fraction for each administrative region, and 
related them to livestock statistics. We used both datasets at their 
original resolution. Specifically, we constructed our models to quantify 
response of green vegetation Cumulative Endmember Fraction to 
changes in i) SPEI3 annual sums, ii) annual sheep and goat livestock 
numbers, and iii) the integration of both SPEI3 and livestock. 

2.7. Fine-scale spatial patterns of vegetation change 

Finally, to test the potential of our Landsat-based approach for 
grassland management, we examined 2018 vegetation change spatial 
patterns for three sites: i) winter camps in Pontic-Caspian steppe in 
Russia; ii) winter camps in shrub desert steppe on Shirvain plain in 
Azerbaijan; and iii) summer grazing grounds in The Kaçkar Mountains in 
Turkey. For each site, we selected five shepherds’ enclosures or camps, 
for which we calculated annual 1988–2019 area of positive and negative 
vegetation change pathways within 0–250, 250–500, and 500–1,000-m 
from the camps. 

3. Results 

3.1. Performance of Whittaker filter for Landsat based Cumulative 
Endmember Fractions 

Our implementation of the Whittaker filter successfully predicted 
missing monthly values. The filter performance was linearly dependent 

Fig. 3. Change pathways in grassland ground cover composition approximated 
by soil, green vegetation, and non-photosynthetic vegetation fractions. 
Figure modified from Lewińska et al. (2020). 
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on the amount of data in a given year (Figure SB4, Table SB1, 
Table SB2), and errors were higher when observations from the months 
of highest endmember fractions were missing. Based on data availability 
(Figures SB2, Table SB1) the overall prediction error for 1987–2019 
Cumulative Endmember Fractions was low to moderate, but errors were 
somewhat higher in mountains (Figure SB5). 

3.2. Short-term and long-term changes in grassland vegetation cover 

We found that grassland vegetation across the Caucasus was highly 
dynamic, with both positive and negative change pathways being 
widespread, as were both short-term and long-term changes. Negative 
change pathways (short-term or long-term) affected about 51,800 km2 

of grasslands (20.9% of all grasslands, 8.8% of the ecoregion) and were 
most widespread in the eastern Caucasus (Fig. 4). About 2,450 km2 of 
grasslands (4.7%) underwent more than one negative change episode 
between 1987 and 2019. Negative change hotspots occurred in the 
Caspian lowland, around the Mingachevir Reservoir, in Nakhchivan, 
Gobustan, and the Shirvan plain. Positive pathways affected approxi
mately 81,200 km2 of grasslands (32.7% of all grasslands, 13.8% of the 
ecoregion), with 7,700 km2 (3.2%) having more than one positive 
change episode. Positive change pathways were most common in the 
southern and eastern parts of the Caucasus. For about 8.4% of all 
grasslands (20,900 km2) we observed at least one sequence of both 

positive and negative change (in any order). Approximately 55,700 km2 

(22.5%) of grasslands experienced a single positive change episode, 
without any negative change lasting ≥3 years. Conversely, a single 
negative change with no positive change episode occurred on 24,500 
km2 (9.9%) of grasslands. Almost 55% of all grasslands (136,700 km2) in 
the regions showed no change in vegetation cover between 1987 and 
2019. The spatial pattern of changes was heterogeneous with adjacent 
patches following often very different trajectories. 

Among the different vegetation change pathways (Fig. 3), positive 
change pathways were the most widespread in the region in any given 
year, and long-term positive changes occurred in around 15% of all 
grasslands in most years (Fig. 5). Revegetation of green fraction was the 
dominant long-term positive change pathway, followed by the revege
tation of dry fraction. Short-term positive changes were more frequent 
before 1996 than after, with greening being the most common change 
pathway since 1996. Short-term revegetation of dry fraction was 
negligible after 1996. Negative change pathways were more widespread 
prior to 2000 than after. Long-term negative change pathways were 
most common in the 1990s when they affected more than 4% of grass
lands each year. Desiccation was the dominant negative change 
pathway, with green vegetation loss coming second. Short-term negative 
change pathways were most prevalent in 1996–1999 and 2011–2019 
with desiccation being the most common. 

The overall accuracy of our vegetation change detection ranged from 

Fig. 4. Number of changes in grassland vegetation composition and green vegetation productivity (short-term and long-term change together) identified between 
1987 and 2019. Panels 1–4 show local spatial patterns highlighting the frequency and complexity of changes. The matrix shows a combinations of frequency of 
positive and negative change episodes, their respective color-coding and the percentage of affected grassland area. 
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95.8 ± 0.7% to 98.7 ± 0.3% among years (Table SA2). User’s accuracy 
for the vegetation change class was on average 81.7% (ranging between 
54.8 ± 6.3% and 93.4 ± 2.3%), and producer’s accuracy on average 56% 
(33.1 ± 7.8% and 78.5 ± 5.8%). 

3.3. Vegetation changes in the different countries 

The area of long-term positive change pathways was generally 
consistent in all countries through years (Fig. 6). In Azerbaijan and Iran 
all three positive change pathways were the most abundant between 
1997 and 2010. In Russia, the greening pathway increased in area until 
2002. Only in Georgia did the area of revegetation green fraction show a 
steady decline after 1997. 

The area affected by long-term negative change pathways decreased 
over time in the whole Caucasus, with a clear transition point around the 
year 2002 (Fig. 6). However, not all countries followed the same change 
trajectory, and disparities occurred among three negative change 
pathways. In Azerbaijan and Iran, the greatest drop in the area of both 
long-term green vegetation loss and dry vegetation loss occurred after 
2002. Long-term green vegetation loss and dry vegetation loss also 
decreased in Armenia and Turkey after 2002. In contrast, in Russia and 
Georgia green vegetation loss and dry vegetation loss were more wide
spread after 2002. Long-term desiccation decreased over time in most 
countries, but not in Georgia and Armenia, and was still widespread in 
Russia and Azerbaijan after 2000. The decrease in area of positive and 
negative long-term change pathways after 2011 was due to our defini
tion of a long-term change as being at least 10 years in duration, which 
meant that all new changes detected in the last nine years of the time 
series were by definition ‘short-term’. 

Overall, we detected four periods of more widespread short-term 
negative changes in vegetation cover: 1988–1992, 1996–1998, 
2011–2014 and 2017–2018, but there were differences in the extent, 
magnitude and exact timing among countries. The greatest changes in 
area of negative changes in grassland vegetation cover occurred in 
Azerbaijan and Russia, particularly for green vegetation loss and 
desiccation. Short-term changes in vegetation cover often re-occurred, 
and the area of positive and negative change pathways frequently 
fluctuated over time (Fig. 6). Short-term revegetation was, on average, 
most widespread before 1995 and clearly declined in all countries 
thereafter. This change was particularly pronounced for green and dry 

revegetation pathways in Russia, Azerbaijan, and Iran. In Russia the area 
of short-term greening increased again briefly in the 2000s. Similarly, 
revegetation of green fraction expanded in the 2000s in Azerbaijan, 
Russia, and Turkey. Finally, both revegetation pathways became again 
more abundant after 2012. 

3.4. Effects of SPEI3 and livestock on the green vegetation Cumulative 
Endmember Fraction 

We found little evidence that the observed changes in grassland 
vegetation were due to weather. The pixel-based correlations of the 
green vegetation Cumulative Endmember Fraction versus the SPEI3 
1987–2019 time series were mostly insignificant (Figure SA6). Howev
er, we observed significant positive correlation in small areas, including 
the southern part of the Caspian Lowland, west and north of the Min
gachevir Reservoir, and in the border region among Turkey, Armenia 
and Iran. Smaller patches of highly positively correlated pixels occurred 
on the slopes of Greater and Lesser Caucasus Mountain Chains. 

Linear regression models showed in general limited explanatory 
power of SPEI3 in explaining variability in green vegetation Cumulative 
Endmember Fraction across the Caucasus (Table SA3-9). In Azerbaijan, 
Iran, and Turkey, we found no significant relationship between SPEI3 
and green vegetation. In Georgia, we found only in the Kvemo Kartli 
province a significant (p>0.05) positive relationship between SPEI3 and 
green vegetation. In the Russian part of the Caucasus Ecoregion the 
relation between SPEI3 and green vegetation was moderately strong at 
best. However, SPEI3 had strong and positive relation to green vegeta
tion in all regions in Armenia. 

Effects of small livestock (i.e., sheep and goats) on green vegetation 
Cumulative Endmember Fraction differed considerably among regions. 
In Azerbaijan, the relation was slightly positive at the country level and 
in three of its regions. The same was true in Chechnya in Russia, where 
we also detected a significant positive relation. Conversely, in 
Gumushane and Erzincan in Turkey we found a significant negative 
relationship. In Armenia, Georgia, and in most of the administrative 
regions in Turkey the relationship between green vegetation and live
stock was insignificant. The same was true in Iran, but that may be due 
to the quality of Iran’s livestock data (Figure SA13). 

Multivariate models including both SPEI3 and livestock were mostly 
insignificant (p>0.05), or their explanatory power was lower than for 

Fig. 5. Annual breakdown of area under short- and long-term vegetation change pathways. Error-adjusted area of vegetation change inTable SA2. Annual vegetation 
change patterns inFigure SA3. Long- and short-term changes shown separately in Figures SA4and SA5, respectively. 
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SPEI3 or livestock alone. The exception was in Krasnodar, Chechnya, 
Stavropol, and Dagestan regions in Russia, where integrating both fac
tors improved explanatory power of the models (Table SA3-9). 

3.5. Changes in grassland vegetation cover at field scale 

Negative and positive changes in grassland vegetation cover often 
occurred in close proximity in the three analyzed grazing sites (Fig. 7). 
In the Pontic-Caspian steppe site (Fig. 7, region 1) we detected many 
large, irregular patches of desiccation, greening, and green vegetation 
loosely corresponding to the shepherd camps’ location. There were few 
changes in vegetation cover in the 1980s and 1990s, moderate positive 
change in the 2000s, and intensified vegetation loss since 2005. Winter 
grazing sites in the Shirvain plain (Fig. 7, region 2) had compacted 
patches of revegetation of green and dry fractions near the Mughan 

Salyan Canal, and green vegetation loss and desiccation further away 
from it. Some of the latter changes had geometric footprints, suggesting 
that they reflect land management actions. Temporal development of 
changes in vegetation cover differed among the analyzed campsites in 
Shirvain plain suggesting site-specific changes, paired with widespread 
revegetation in the late 2000s. Changes in vegetation cover in the Kaçkar 
Mountains (Fig. 7, region 3) were limited to small patches of desiccation 
and greening located afar from the camps. 

We observed no relationship between vegetation change pathways 
and the three distance zones. For example, we did not find higher 
probability of green vegetation loss nearer the camps. However, we did 
find more widespread vegetation changes in the sites in Russia and 
Azerbaijan after the 2000s, including more abundant negative changes. 

Fig. 6. Adjusted total area of revegetation green fraction, greening, revegetation dry fraction, green vegetation loss, desiccation, and dry vegetation loss mapped 
separately for long-term and short-term changes at the country level (values of the area adjustment coefficient are small, thus the shaded ribbons representing 
uncertainty are visible only for the ‘All countries’ category). 
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Fig. 7. Changes in grassland vegetation cover in 2018 (both short- and long-term changes) in: 1) Pontic Caspian steppe in Russia (winter grazing); 2) shrub desert 
steppe on Shirvain plain in Azerbaijan (winter grazing); and 3) in The Kaçkar Mountains in Turkey (summer grazing). Dots represent active shepherds’ camps and 
enclosures (background: Google Earth). Below, three selected examples of area of positive and negative changes in grassland vegetation between 1988 and 2019 
showed within three distances (0-250-m, 250-500-m, and 500–1,000-m, for left, center and right bar for each annual panel, respectively) centered at selected 
shepherds’ camps. Please mind the different y-range in the plot 2C. Plots for the remaining marked camps in Figures SA16, SA17 and SA18. 
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4. Discussion 

Mapping and monitoring changes in grassland vegetation cover is 
essential to understand grasslands dynamics and thus to support global 
ecosystem monitoring and sustainable land management. Unfortu
nately, grassland ecosystems lack the routine monitoring with medium- 
resolution satellite imagery that is standard, for example, for forests. 
Here, we adapted Cumulative Endmember Fractions (Lewińska et al., 
2020) for the first time to analyze Landsat data and mapped short- and 
long-term negative and positive changes in grassland ground cover at 
30-m resolution across the Caucasus. We found ample short- (3–9 years) 
and long-term (≥10 years) changes, both negative and positive, in 
grassland vegetation cover from 1987 to 2019. Furthermore, we found 
statistically significant relationship between green vegetation Cumula
tive Endmember Fraction and SPEI3 at regional level in Armenia, and 
green vegetation and small livestock numbers in Azerbaijan. The 
medium-resolution of the Landsat data makes our approach relevant for 
land management because vegetation dynamics of individual fields and 
pastures can be captured, as we demonstrated in three test sites. 

4.1. Landsat based Cumulative Endmember Fractions 

Availability of the clear-sky Landsat observations is often restricted, 
especially in the early years of the Landsat record (Wulder et al., 2016). 
Here, we applied the Whittaker filter to predict missing monthly com
posites, and it performed very well. Previous studies applied the Whit
taker filter to fill gaps in MERIS and MODIS dense time series (Atkinson 
et al., 2012; Kandasamy et al., 2013), or annual values for Landsat 
(Study et al., 2020), but we were the first, to the best of our knowledge, 
to fill missing monthly Landsat values. Our predicting missing monthly 
observations had low to moderate error (Supplement B.1.), with a linear 
relation between number of missing data and RMSE of the fit 
(Figure SB4). The highest prediction errors occurred in mountain 
grasslands, most likely due to snow and more frequent cloud cover 
(Wilson and Jetz, 2016). Neither the accuracy of vegetation change 
detection, nor of vegetation change pathways were affected by low 
Landsat data availability in 2003 (due to SLC failure in Landsat 7 
(Andréfouët et al., 2003)) (Figure SB1), or 2012 (due to several technical 
issues of Landsat 5). 

4.2. Changes in grassland vegetation cover in the Caucasus Ecoregion 

We found highly dynamic spatial and temporal pattern of changes in 
grassland vegetation cover in the Caucasus Ecoregion. Almost 45% of 
grasslands experienced at least one change in grassland green vegetation 
productivity or ground cover composition between 1987 and 2019, with 
many areas experiencing more than one change episode. This is in line 
with other studies that mapped up to four trend breakpoints from 1981 
to 2008 based on 8-km GIMMS NDVI time series data in the region (de 
Jong et al., 2012), or ecosystem turning points between 1982 and 2011 
(Horion et al., 2016). We identified long-term positive vegetation 
changes especially in the Kaçkar Mountains in Turkey, and in the 
Greater and Lesser Caucasus Mountains, similar to other studies (e.g., de 
Jong et al., 2012; Horion et al., 2016; Vinogradova and Gracheva, 
2018). These positive changes are likely due to pasture abandonment 
stemming from outmigration (Radvanyi and Muduyev, 2007; Vinogra
dova and Gracheva, 2018), and to climate change (Gao et al., 2016), 
which often boost vegetation growth at high elevations (Jolly et al., 
2005). Moreover, 2001–2013 gains in evapotranspiration and greenness 
in Armenia and central Azerbaijan mapped by de Beurs et al. (2015) 
coincide with greening change pathways in our time series during those 
years. Extensive and repetitive green vegetation loss and desiccation 
pathways in the Caspian Lowlands, Gobustan, and around the Min
gachevir Reservoir also agree with other studies (de Beurs et al., 2015; 
de Jong et al., 2012) including our own previous MODIS based analysis 
(Lewińska et al., 2020), as well as local reports of increased land-use 

pressure (NACRES, 2013; Shatberashvili et al., 2015), and salinization 
(UNEP, 2011). More widespread short-term negative change pathways 
in late 1990s in Azerbaijan and the Iranian part of the Caucasus may 
have been due to regional drought conditions (Shayanmehr et al., 2020). 
Furthermore abrupt decline in short-term positive change pathways in 
Azerbaijan and Georgia around 1996 coincide with the implementation 
of national land reforms (Hartvigsen, 2013) and the end of the first war 
in Nagorno-Karabakh, which affected agricultural production in 
Azerbaijan in the early 1990s (Neudert, 2015). 

In the northern Caucasus, we found widespread long-term positive 
changes in grassland vegetation cover, which partially align with 
1999–2015 LAI trends (Munier et al., 2018) and are most likely due to 
the dramatic decrease in livestock numbers during the 1980s (Didebu
lidze and Plachtd, 2002; Smelansky and Tishkov, 2012). Lower grazing 
pressure allowed the steppe to recover, which in turn triggered an in
crease in grassland fires (Dubinin et al., 2010). This matches the 
1996–2002 increase in short-term desiccation and green vegetation loss, 
and 2003–2011 short-term greening that we found in the northern 
Caucasus. The change in the fire regime due to biomass accumulation 
may be the reason for the almost complete cessation of short-term 
revegetation of green and dry fractions after 1996. Our results in the 
northern Caucasus differ from vegetation indices based trends in de 
Beurs et al. (2015) and de Jong et al. (2012), but we suggest that these 
disparities are due to different analytical approaches, variation in the 
length of the time series that were analyzed, different spatial resolution 
of the satellite data, and the fact that we analyzed only grasslands. 
Finally, the regional decrease in Tasseled Cap greenness and increase in 
brightness identified by de Beurs et al. (2015) matches our hotspots of 
desiccation and green vegetation loss pathways. 

We found that the area of positive changes in vegetation cover in the 
Caucasus declined over time. While the decline of long-term positive 
pathways in the most recent years is due to our definition of long-term 
change, short-term changes did not compensate for the drop in long- 
term changes. Moreover, the increase in the area of negative change 
pathways since 2011 could be related to increasing degradation pressure 
(Patriche et al., 2021). Compared to our prior MODIS-based analyses 
(Lewińska et al., 2020), we found a lower area subjected to negative 
change pathways for 2002–2018, but the temporal trends were similar. 
The difference in area is mostly due to application of stricter threshold 
for change detection (20% vs. 10%), and the medium-resolution Landsat 
data. 

Overall, our vegetation change detection had low annual commis
sion error, but a somewhat higher omission error (Table SA2). That is 
opposite of what is typical for LandTrendr detection of forest distur
bance, where commission errors are typically higher (Cohen et al., 2018, 
2020). However, compared to grasslands, forests have less natural 
intra-annual variability, whereas their spectral change caused by 
disturbance typically is greater and lasts over several years, making 
detection easier. Finally, compared with other studies on grasslands 
done using LandTrendr (e.g., Dara et al., 2020), we mapped also the 
shortest and most subtle definition of change, which increased the 
complexity of the analysis, thus the probability for errors. 

4.3. Effects of SPEI3 and livestock on the green vegetation Cumulative 
Endmember Fraction 

The pixel-wise correlation between green vegetation Cumulative 
Endmember Fraction and SPEI3 was mostly insignificant in the Cauca
sus. This matches other studies (Ivits et al., 2016; Kamali and Khosravi, 
2020), and is unlikely to be due to time lags because vegetation in the 
Caucasus has moderate to good resistance and resilience to short-term 
drought and temperature anomalies (De Keersmaecker et al., 2015; 
Ivits et al., 2016). We found only in grasslands at higher elevations that 
green vegetation was significantly correlated with SPEI3, which could 
be an effect of diminished anthropogenic pressure due to the ongoing 
outmigration from the mountain regions and pasture abandonment 
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(Radvanyi and Muduyev, 2007; Vinogradova and Gracheva, 2018), 
combined with better vegetation growth conditions at higher elevations 
due to climate change (Jolly et al., 2005). The positive relation between 
green vegetation Cumulative Endmember Fraction and SPEI3 in 
Azerbaijan west of the Mingachevir Reservoir suggests that this region, 
which was prior to 1991 a traditional winter pasture for herders from 
Georgia (Neudert, 2015), is not used as much anymore. 

The relation between green vegetation Cumulative Endmember 
Fraction and small livestock numbers and SPEI3 on national and 
regional level varied across the Caucasus, but our models found only a 
few significant relationships between green vegetation Cumulative 
Endmember Fraction and SPEI3 or livestock. SPEI was only clearly 
related to green vegetation in Armenia, but not in the other countries. 
Livestock was overall significantly positively associated with green 
vegetation in regions where grazing occurs in steppe vegetation, oppo
site to what we expected, but only moderately so. In provinces where 
mountain grasslands dominate and grazing pressure is low, SPEI3 had 
the greatest predictive power. 

The low explanatory power of our models does not mean that cli
matic conditions and livestock numbers do not determine the amount of 
green vegetation in the region. Instead, we suggest that the reason why 
our models were only mildly successful in explaining the changes in 
green vegetation is that the relevant processes, especially grazing and 
livestock management, happen at fine scales. Our livestock data, which 
was only available for regions, did not capture these fine-scale processes, 
and while the SPEI3 data had higher spatial resolution, they alone could 
not capture the interactive effects of livestock and climate. Moreover, 
there were some discrepancies between where animals were registered 
and where they grazed, and livestock population estimates are biased 
low because the census is conducted in winter when the population 
reaches its annual low point (Leeuw et al., 2019). Furthermore, model 
performances could have been lower in regions that employ fallowing 
(Yin et al., 2018), selective resting (Neudert, 2015), or grazing on har
vested fields. Finally, beside sheep and goats, cows, horses, mules and 
camels are also grazed in the Caucasus (Neudert, 2015; Neudert et al., 
2019; Smelansky and Tishkov, 2012), and the proportion of big cattle 
grazed outdoors and being kept indoors varies among countries and 
regions (Didebulidze and Plachtd, 2002). Consequently, without 
detailed information on herd structures, including big cattle into our 
models would introduce additional uncertainty, especially when mea
sures that convert all livestock species to ‘sheep units’ are not adjusted 
for differences in grazing effects due to pinching height or stomping, 
which are important in steppe ecosystems (Smelansky and Tishkov, 
2012). These other issues aside though, we attribute the limited 
explanatory power of our models mainly to the coarse scale of the 
livestock data, and the high spatial heterogeneity of green vegetation 
patterns that we detected thanks to Landsat’s 30-m resolution supports 
that assertion. 

4.4. Changes in grassland vegetation cover at field scale 

We found great heterogeneity in the spatial and temporal patterns of 
vegetation change in proximity of the shepherds’ camps in all three sites. 
The lack of expected concentric patterns of vegetation change around 
camps is likely due to camp organization, herding practices, and land 
management. When we digitized the camps, we noted remains of 
abandoned old buildings and animal enclosures dispersed throughout 
the Shirvain plains sites. Throughout the Caucasus, camps were some
times abandoned due to limited building maintenance during the 1990s, 
and due to the current land tenure system in which investment into 
building assets often depends on the length of a lease (Neudert, 2015; 
Neudert and Allahverdiyeva, 2009). In Pontic Caspian steppe, camps’ 
locations remained stable but in only some cases was there severe 
degradation and desertification nearby. Finally in Turkey, complex 
topography and collective character of camps comprising many small 
enclosures and huts or tents complicated the distance-based analyses. 

Overall though, our field scale results showed a high level of 
spatio-temporal heterogeneity of vegetation change, which arises from 
complexity of local environmental conditions, land management and 
land use history, with many meadows being transformed into pastures 
from croplands, thus fostering different species composition (Belo
novskaya et al., 2016; Vinogradova and Gracheva, 2018). This high
lights importance of mapping grassland dynamics with 30-m satellite 
data, instead of coarse-resolution data. 

5. Conclusions 

Reliable monitoring of changes in vegetation cover in grasslands is 
crucial for accurate and sustainable land management and thus ulti
mately for achieving Land Degradation Neutrality goals and curbing 
climate change. Here, we developed a novel way to map changes in 
grassland to monitor both long- and short-term, as well as positive and 
negative changes in grassland vegetation at 30-m resolution based on 
the complete Landsat archive. Our approach combining existing algo
rithms and methods worked well and provided unique temporal and 
spatial information on vegetation dynamics across the Caucasus Ecor
egion since the mid-1980s. Importantly, we were able to distinguish 
among six change pathways, providing better insight into the types of 
changes that occurred. Interestingly though, the variability in green 
vegetation Cumulative Endmember Fraction was generally not well 
explained by either meteorological conditions or small livestock 
numbers, most likely because the spatial detail of the vegetation changes 
captured by Landsat is due to fine-scale differences in grazing that are 
not captured by coarse livestock data. 

To the best of our knowledge our analysis is the first pan-Caucasus 
study of vegetation change since the Soviet era in the mid-1980s at 
30-m resolution, and one of only a handful of studies to analyze grass
land conditions for a large area based on the full Landsat time series. As 
such, our results offer new insights into vegetation change processes. 
Maybe more importantly, our new approach is globally applicable yet 
management-relevant at local scales, as its physically-based origin 
provides a strong quantitative foundation to study grassland change 
processes. 
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