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A B S T R A C T   

Bird species richness is highly dependent on the amount of energy available in an ecosystem, with more available 
energy supporting higher species richness. A good indicator for available energy is Gross Primary Productivity 
(GPP), which can be estimated from satellite data. 

Our question was how temporal dynamics in GPP affect bird species richness. Specifically, we evaluated the 
potential of the Dynamic Habitat Indices (DHIs) derived from MODIS GPP data together with environmental and 
climatic variables to explain annual patterns in bird richness across the conterminous United States. By focusing 
on annual DHIs, we expand on previous applications of multi-year composite DHIs, and could evaluate lag-effects 
between changes in GPP and species richness. 

We used 8-day GPP data from 2003 to 2013 to calculate annual DHIs, which capture three aspects of vege
tation productivity: (1) annual cumulative productivity, (2) annual minimum productivity, and (3) annual 
seasonality expressed as the coefficient of variation in productivity. For each year from 2003 to 2013, we 
calculated total bird species richness and richness within six functional guilds, based on North American 
Breeding Bird Survey data. 

The DHIs alone explained up to 53% of the variation in annual bird richness within the different guilds 
(adjusted deviance-squared D2

adj = 0.20–0.52), and up to 75% of the variation (D2
adj = 0.28–0.75) when 

combined with other environmental and climatic variables. Annual DHIs had the highest explanatory power for 
habitat-based guilds, such as grassland (D2

adj = 0.67) and woodland breeding species (D2
adj = 0.75). We found 

some inter-annual variability in the explanatory power of annual DHIs, with a difference of 5–7 percentage 
points in explained variation among years in DHI-only models, and 3–7 points for models combining DHI, 
environmental and climatic variables. Our results using lagged year models did not deviate substantially from 
same-year annual models. 

We demonstrate the relevance of annual DHIs for biodiversity science, as effective predictors of temporal 
variation in species richness patterns. We suggest that the use of annual DHIs can improve conservation planning, 
by conveying the range of patterns of biodiversity response to global changes, over time.   

1. Introduction 

Given global biodiversity declines and climate change, biodiversity 
assessments are a key priority (Thuiller, 2007), and evaluating current 
species distribution patterns is critical for identifying hotspots of 
biodiversity (Elith et al., 2010; Bateman et al., 2016b). Many factors, 

including environmental and climatic drivers, govern the distribution of 
species (Kerr and Packer, 1997; Barbet-Massin and Jetz, 2014). Despite 
tremendous progress in habitat suitability and distribution modeling in 
recent decades (Elith et al., 2006; D’Amen et al., 2017; Guisan et al., 
2017), there is still a lack of readily accessible biodiversity indices with 
yearly temporal resolution that can be used to assess species’ 
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distributions (Pereira et al., 2013; Skidmore et al., 2015; Jetz et al., 
2019). 

Concomitant to advances in species distribution modeling, substan
tial progress has been made in the field of remote sensing of the envi
ronment (Pettorelli et al., 2014; Guisan et al., 2017). Information 
defining the potential distribution of a species based on its habitat can be 
gathered from satellite imagery and allows wall-to-wall mapping of 
species habitat suitability. The high temporal resolution of satellite data, 
such as global daily coverage by Moderate Resolution Imaging Spec
troradiometer (MODIS) data with a spatial resolution of 1 km, opens 
possibilities for analyses of interannual changes. Annual data are also 
important to detect lag-effects of environmental variables on species 
richness (Menéndez et al., 2006). 

Positive correlations between animal species richness and phenology 
measures have been found in numerous studies (Hurlbert, 2004; Carrara 
and Vázquez, 2010; Phillips et al., 2010; Dobson et al., 2015; Hobi et al., 
2017; Radeloff et al., 2019). Postulated as the species-energy relationship, 
this hypothesis predicts a positive relationship between species richness 
and vegetation productivity (Wright, 1983). The explanation for this 
general pattern is that areas with greater food resources for animals can 
support more individuals, and communities with more individuals can 
support populations of more species (Srivastava and Lawton, 1998; 
Hurlbert, 2004). In addition to energy, many other environmental and 
climatic factors such as landcover, vegetation height, temperature and 
precipitation are strong drivers of species richness (Rittenhouse et al., 
2012; Huang et al., 2014; Clement et al., 2019; Suttidate et al., 2019; 
Elsen et al., 2020). All these factors can be used to characterize the 
heterogeneity of species’ habitats (Macarthur, 1965) and contribute to 
our understanding of the patterns of species richness. 

The Dynamic Habitat Indices (DHIs) based on MODIS Gross Primary 
Productivity (GPP) effectively characterize spatial variation in species 
richness (Mackey et al., 2004; Berry et al., 2007; Duro et al., 2007; Hobi 
et al., 2017; Coops et al., 2019; Radeloff et al., 2019). Although it is 
possible to derive the DHIs from several MODIS products, GPP-based 
DHIs perform best when explaining patterns of bird richness in the U. 
S. (Hobi et al., 2017). The DHIs summarize three aspects of annual plant 
productivity: (1) cumulative productivity, because sites with more 
available energy are generally more biodiverse, (2) minimum produc
tivity, because sites with high minima are more biodiverse, and (3) 
seasonality expressed as the coefficient of variation in productivity, 
because sites with less intra-annual variability are generally more 
biodiverse. 

We focus on the distribution of breeding birds within the contermi
nous United States because birds are among the most studied taxa 
(Langham et al., 2015) and are experiencing global declines (BirdLife 
International, 2018). In the U.S., the multi-year composite DHIs are 
significantly correlated with bird species richness (Coops et al., 2009; 
Hobi et al., 2017). Here we relate annual DHIs in combination with other 
environmental drivers to annual bird richness at the North American 
Breeding Bird Survey (BBS) route level, i.e., at higher spatial and tem
poral resolution than previous studies (Hobi et al., 2017; Coops et al., 
2019; Radeloff et al., 2019; Suttidate et al., 2019; Razenkova et al., 
2020). 

Our overarching goal was to investigate inter-annual variation in the 
patterns of breeding bird richness from 2003 to 2013 within the 
conterminous U.S. We developed annual DHIs, and explained the vari
ation in species richness within different habitat guilds at the route level 
and at an annual time scale, based on the three DHIs only, and in 
combination with elevation, temperature, precipitation and vegetation 
cover, to assess their relative importance. We also tested for lag-effects 
between changes in species richness and changes in their habitat. 

We addressed three main questions:  

(1) How much of the annual variation in bird species richness can the 
DHIs explain?  

(2) How much do other environmental and climatic variables 
contribute to the explained variation in bird species richness?  

(3) Are inter-annual changes in the DHIs reflected in changes in bird 
species richness, and are there lag-effects in these relationships? 

2. Methods 

2.1. Calculation of dynamic habitat indices (DHIs) 

We derived annual DHIs from 1-km resolution MODIS Collection 5 
Terra (MOD17A2) Gross Primary Productivity (GPP) data for 2003 to 
2013 (see http://silvis.forest.wisc.edu/dhis). We calculated cumulative 
productivity (DHI Cum) as the sum of productivity values for each year, 
minimum productivity (DHI Min) as the minimum value of the pheno
logical curve of each year, and variation in productivity (DHI Var) as the 
coefficient of variation of productivity values over the course of each 
year (Hobi et al., 2017). For the 8-day GPP data, this resulted in 46 
datasets per year. 

To remove noise due to clouds or haze, we extracted the quality 
assessment (QA) metadata and set the threshold for good quality pixels 
to QA < 83. In addition, we set values of zero to perennial snow and ice 
areas (fill value 32764) as well as rock, tundra or desert (fill value 
32765), because there is little to no vegetation productivity throughout 
the year in these areas. Further, because the algorithms underlying the 
calculations of MODIS GPP are for upland biome only, we set values to 
no-data for urban/built-up areas (fill value 32762), permanent wet
lands/inundated marshlands (fill value 32763), and perennial salt and 
inland fresh water (fill value 32766). Lastly, we corrected for missing 
data due to lack of light at the start and the end of the season at northern 
latitudes, and set values to zero for these period if vegetation produc
tivity values were available during mid-season. 

To eliminate noise that is inherent in the raw MODIS GPP data for 
individual dates, we applied a two-step filtering procedure. The steps 
included an iterative median and a Savitzky-Golay filter (Fig. 1). The 
iterative median filter is based on Chen et al. (2004) and eliminates 
noise that reflects depressed raw values. The main difference between 
our approach and the one of Chen et al. (2004) is that we use an inter
active median filter followed by the Savitzky-Golay. The Savitzky-Golay 
filter fits a second-order polynomial function based on a window size of 
13 time steps and creates smoothed curves of the reconstructed data. 
Because this filter can create data values that fall outside of the allowed 
interval for GPP, we forced values outside this interval to be within the 
minimum and maximum allowed values (valid range: 0–30,000 kg C/ 
m2). To assure smooth transitions between years we used buffer values 
from the preceding and following year to avoid sharp changes. 

2.2. Richness based on Breeding Bird Survey 

The North American Breeding Bird Survey is a large-scale annual 
bird survey of species occurrences observed along ~39.4 km routes 
(Sauer et al., 2014). Volunteer observers report counts of each species 
seen or heard in a 3-min period at 50 stops along the routes. From the 
almost 4000 routes covering the conterminous U.S. we chose the 1113 
permanent routes that had been surveyed every year during our study 
period from 2003 to 2013. We defined species richness as the total 
number of species observed along each route, meaning that we calcu
lated the number of species ever detected on all the stops of a given route 
over the observed decade for the first part of our analysis. At the annual 
time scale it is the total number of species observed in one year for all the 
stops of a given route. We excluded rare species (<30 observations), 
because they are not representative of the communities we are investi
gating. Because we were only interested in species’ presence, not rela
tive abundance, we did not account for observer differences or related 
factors (Thogmartin et al., 2006). 

We distinguished six functional guilds (Table 1) as defined by the 
BBS based on the breeding ecology of birds, including the type of 
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vegetation where they breed (breeding habitat), where they place nests 
(nest location) and their seasonal movement behavior (migratory habit). 
To relate the DHIs to route-level bird richness, we calculated the mean 
and standard deviation of DHIs within a 39.4-km diameter circle around 
the BBS route centroids (Table 2). Such a circle as a buffer incorporates 
the entire length of the route and its radius is comparable to the median 
maximum natal dispersal distance (31 km) of 76 bird species for which it 
has been observed (Sutherland et al., 2000). The buffer approach is 
commonly used in studies linking BBS data to environmental data (e.g. 
Pidgeon et al., 2007; Culbert et al., 2013; Bateman et al., 2015). 

2.3. Environmental and climatic explanatory variables 

We extracted additional environmental and climatic variables for 
each BBS route within the 39.4-km diameter circles (Table 2). We 
included latitude (lat) and longitude (long) and mean elevation (elev) 
from the U.S. National Elevation Dataset of BBS route centroids. As a 
measure of vegetation cover we used MODIS vegetation continuous field 
(VCF) data (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_pr 
oducts_table/mod44b) with a spatial resolution of 250 m. We extracted 
mean values for its three components: (1) percentage of tree cover 
(forest), (2) percentage of shrub cover (shrub), and (3) percentage of 
barren land (bare). We gathered canopy height information from the 
2000 National Biomass and Carbon Dataset (Kellndorfer et al., 2004) 

using the mean (CHM) and standard deviation (sdCHM). For climatic 
variables, we extracted Daymet meteorological data (Thornton et al., 
1997) at the BBS centroids. These are gridded estimates (1980–2014) of 
daily weather parameters for North America (http://silvis.forest.wisc.ed 
u/climate-averages-and-extremes) at 1-km resolution and include 
eleven temperature and eight precipitation measures. 

2.4. Variable selection and statistical analyses 

We selected variables and related (i) the DHIs, (ii) environmental, 
and (iii) climatic variables to bird species richness at two temporal 
scales. First, we conducted statistical analyses of total bird richness from 

Fig. 1. Two examples of the two filters within the smoothing process: first an iterative median filter and second the Savitzky-Golay filter. The dates are month, day 
and year. 

Table 1 
Functional guilds used in this study, as defined by the North American Breeding 
Bird Survey (BBS). * Some species may be included in several guilds since they 
are not mutually exclusive.  

Functional 
guild 

Guilds Short 
name 

N Description 

All birds All all 316 North American land 
birds of all guilds 

Breeding 
habitat 

Woodland wood 139 Birds breeding in 
savannas and forest  

Early 
successional/ 
scrub 

succession 87 Birds breeding in early 
succession or scrub  

Grassland grass 27 Birds breeding in 
grasslands 

Nest location Ground/low ground 117 Birds nesting within 1 
m of ground  

Mid-story/ 
canopy 

canopy 123 Birds nesting >1 m 
above ground 

Migratory 
habit 

Permanent 
resident 

permanent 92 Non-migratory birds 

*Description of the guilds on the BBS webpage, all these guilds do not include 
wetland birds: https://www.mbr-pwrc.usgs.gov/bbs/guild/guildlst.html. 

Table 2 
Overview of the 33 variables (DHI, environmental and climatic) used for 
modeling bird species richness. Grayed out variables were dropped from the 
final predictor set due to high collinearity.   

Variables Description 

DHI DHIcum cumulative DHI 
sdDHIcum standard deviation of DHI Cum 
DHImin minimum DHI 
sdDHImin standard deviation of DHI Min 
DHIvar variation DHI 
sdDHIvar standard deviation of DHI Var 

ENVIRONMENTAL Long longitude [◦] 
Lat latitude [◦] 
Elev elevation [m a.s.l.] 
Forest percentage of forest [%] 
Shrub percentage of shrub land [%] 
Bare percentage of barren land [%] 
CHM canopy height [m] 
sdCHM standard deviation of canopy height [m] 

CLIMATIC AMT annual mean temperature [◦C] 
MDR mean diurnal range of temperature [◦C] 
ISO isothermality [%] 
TS seasonality of temperature [%] 
MXTWP maximum temperature of warmest month [◦C] 
MNTWP minimum temperature of coldest month [◦C] 
TAR temperature annual range [◦C] 
MTWetQ mean temperature of wettest quarter [◦C] 
MTDryQ mean temperature of driest quarter [◦C] 
MTWarmQ mean temperature of warmest quarter [◦C] 
MTColdQ mean temperature of coldest quarter [◦C] 
AP annual precipitation [mm] 
PWP precipitation of wettest month [mm] 
PDP precipitation of driest month [mm] 
PS seasonality of precipitation [%] 
PWetQ precipitation of wettest quarter [mm] 
PDryQ precipitation of driest quarter [mm] 
PWarmQ precipitation of warmest quarter [mm] 
PColdQ precipitation of coldest quarter [mm]  
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2003 to 2013 versus our covariates, which we averaged for the period 
from 2003 to 2013. Second, we parameterized annual models, in which 
we regressed bird richness in a single year, e.g., 2003 against climate 
variables for the same year, i.e., 2003, or against lagged climate data, e. 
g., 2002. The annual models were parameterized separately for each 
year to avoid temporal autocorrelation issues in the dependent variable. 

We evaluated the potential of each individual variable within the 
three sets of predictors using univariate and multivariate Poisson 
generalized linear models (GLMs). Due to high collinearity in the full set 
of variables, we conducted a variable selection analysis prior to running 
global models. From the eight environmental variables we eliminated 
those that were highly correlated (|r| ≥ 0.7) and grouped closely 
together in cluster and PCA analyses (Figs. S1, S2). Among groups of 
correlated variables, we retained those that had the strongest relation
ships with bird richness based on GLMs, resulting in four environmental 
variables (elev, forest, shrub and sdCHM). Many of the 19 climatic vari
ables were also highly correlated (Figs. S3-S5). Here we retained a few 
representative, uncorrelated variables related to both temperature and 
precipitation. We selected MTWarmQ and ISO as final measures of 
temperature and PWarmQ and PS for precipitation, because they were 
good univariate predictors of bird species richness (Table 2). At this 
stage, we retained all of the DHI variables, in order to evaluate their 
potential. However, DHImin and sdDHImin were almost perfectly 
correlated (r = 0.98), and DHImin and DHIvar were also highly corre
lated (r = − 0.89; Fig. S6). 

Based on the set of remaining variables we first ran Poisson GLM 
best-subset regressions (R Package MuMIn; Barton, 2019) with mean 
values across all years from 2003 to 2013 as our response variable. We 
ran these for all species combined and for the six functional groups. We 
selected the best model for each bird functional group using the 
Bayesian Information Criterion (BIC). We then conducted stepwise se
lection of the variables in these top-performing models, and only 
retained variables that were not highly correlated based on variance 
inflation factors (VIF), using a threshold of 10 (R package usdm; Naimi, 
2015). DHImin and sdDHImin were never selected to be in the same 
models due to high collinearity (VIF > 10), which is why we dropped 
sdDHImin from all models. These averaged models for a full decade are 
similar to the models in Hobi et al. (2017), but differ in terms of the 
statistical approach, the selection of explanatory variables and the unit 
of observation, which is why we include multi-year model results here 
for comparison with our annual models. 

To evaluate how interannual changes in GPP may cause interannual 
changes in species richness, we ran annual models for each year sepa
rately relating predictors selected in top-ranked models mentioned 
above with bird richness for each individual year. To evaluate potential 
lag-effects of changes in GPP on interannual changes in species richness, 
we re-ran the annual models, but using predictors from year “x” to 
explain bird richness in year “x + 1” (one-year lag), and year “x + 2” 
(two-year lag). 

We applied hierarchical partitioning to evaluate the independent 
contribution of each variable to total explained variation in species 
richness (R package hier.part; Walsh and Nally, 2015). We compared 
total explained variation and contributions of individual variables using 
adjusted deviance-squared D2

adj (Cameron and Windmeijer, 1997; Gui
san and Zimmermann, 2000), a generalized measure of explained vari
ation for GLMs (R package modEvA; Barbosa et al., 2016). To check for 
spatial autocorrelation of the BBS route locations, we fitted non- 
parametric covariance functions and analyzed model residuals in 
spline correlograms with bootstrap confidence envelopes, using 1000 
permutations and a 95% confidence level as threshold (R Package ncf; 
BjØrnstad and Falck, 2001; BjØrnstad, 2020). The resulting correlo
grams of model residuals based on the total bird richness data from the 
years 2003–2013 showed only a minimal degree of spatial autocorre
lation (Fig. S7) and that is why we did not need to account for it in our 
models. 

3. Results 

3.1. Performance of the DHIs in bird species richness models 

Models including only the DHIs explained 20–52% of the variation in 
annual bird species richness (Table 3). We found considerable differ
ences in how well the different functional guilds were explained, with 
the highest variation explained for grassland and woodland breeding 
birds, mid-story/canopy nesters, and all species combined (D2

adj =

0.47–0.52). Conversely, only a small amount of the variation in early 
successional, ground-nesting and permanent resident guilds was 
explained (D2

adj = 0.20–0.38). Overall, DHIcum and DHIvar were the 
most important predictors in DHI-only models, but there were distinct 
differences among the functional guilds (Table 3). 

3.2. Contribution of other environmental and climatic factors in 
explaining bird richness 

For all guilds, the addition of ancillary environmental and climatic 
variables improved model performance (Tables 3, 4). When combined 
with environmental and climatic variables, the DHIs explained up to 
75% of the variation in bird richness (Table 4), with good models for 
grassland, mid-story canopy, and woodland birds as well as all bird 
species combined (D2

adj = 0.64–0.75), moderate models for the ground 
nesting and permanent resident guilds (D2

adj = 0.44–0.46), and a rela
tively poor model for the early successional guild (D2

adj = 0.28). When 
modeling all species richness, the best model explained 58% of the 
variation. For some guilds the environmental and climatic variables 
were very important additional predictors. For example, an additional 
18 percentage points of the variation of grassland breeding species and 
26 percentage points of woodland breeding species were explained 
when additional variables were included (Tables 3, 4). For the other 
guilds the added contribution beyond that of the DHIs ranged from 6 to 
12 percentage points. 

Environmental variables such as forest and shrub and sdCHM were 
important contributors in the top models for at least four functional 
guilds. In contrast, the influence of climatic drivers was highly variable 
among the guilds, and exhibited no clear pattern. Interestingly, when we 
included the mean values of the three DHIs (DHIcum, DHImin and 
DHIvar), they contributed between 7 and 38% of the overall explained 
variation (Table 4), but the two standard deviations of the DHIs 
(sdDHIcum and sdDHIvar) only 3–8%. While, for example, four of the five 
DHI variables were included in the top-ranked model for the permanent 
resident guild, only two to three DHI variables were selected in the other 
guild models. 

3.3. Interannual patterns and lag-effects 

We observed moderate differences in the amount of explained vari
ation among years. These differences ranged from 5 to 7 percentage 
points of the total explained variation for DHI-only models and 37 points 
for models where DHIs were combined with other environmental and 
climatic variables (Fig. 2a). This interannual variability was even 
greater for individual variables, with differences of up to 19 percentage 
points in predictor contributions towards variation explained, among 
years (Fig. 2b, 2c). For example, in the DHI-only models the contribution 
of DHIcum varied by 19 percentage points among years and the contri
bution of DHIvar varied by 16 points among years (Fig. 2b). In models 
combining DHIs with environmental and climatic variables, we also 
observed interannual differences in the individual contributions of 
predictors towards variation explained; iso, DHIvar, sdDHIvar, sdCHM 
and shrub showed changes between years of more than 10 percentage 
points (Fig. 2c). Interestingly, lag-effect results did differ substantially 
from same-year annual results, showing similar variation between the 
annual models but not resulting in higher total variation explained. This 
held true for both the one-year (Fig. 3) and the two-year lag models 
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(data not shown). 

4. Discussion 

4.1. Annual DHIs improved model performance of most bird functional 
guilds 

We found that the annual DHIs were effective explanatory variables 
of annual species richness, explaining up to 52% of the variation in bird 
richness. Combining DHIs with environmental and climatic variables 
improved models for most guilds we assessed, increasing total explained 
variation by more than 10 percentage points. For the early-successional 
and ground-nesting guilds, the explanatory power of DHI-only models 
was not much higher when adding environmental and climatic vari
ables, and model performance for these guilds remained poor. That the 
added contribution of environmental variables differs strongly among 
guilds was also found in a study in Thailand, where the DHIs, topog
raphy, temperature and precipitation were used to explain bird richness 
(Suttidate et al., 2019). This reflects the diversity in habitat preferences 
among functional guilds, and the challenges of capturing diverse aspects 
of habitat heterogeneity with the selected environmental and climatic 
drivers. 

For grassland and woodland breeding birds, the high amount of 
explained variation (18–26 percentage points) contributed by other 
environmental drivers was striking. Models for these two guilds, as well 
as for midstory/canopy nesting birds and all birds combined, had the 
highest explained variation in DHI-only models, as well as in the models 
with other environmental and climatic drivers. This finding is consistent 
with results across the US at the ecoregion level where grassland and 
woodland breeding species richness was modeled with DHIs derived 
from different MODIS vegetation productivity data and showed highest 
performance among all functional guilds evaluated (Hobi et al., 2017). 
While being highly dependent on overall vegetation productivity, as 
indicated by cumulative DHI in the DHI-only model, grassland and 
woodland breeding birds also showed relationships with a combination 
of temperature, precipitation and land cover factors characterizing the 
habitat of these species. Especially for these two guilds, it was inter
esting to see how environmental and climatic variables functioned as 
surrogates for DHIs. For the woodland guild, the combination of forest 

and shrub landcover together with information on elevation and canopy 
height was such a strong surrogate for characterizing woodland habitat 
that cumulative DHI, the most important factor in the DHI-only model, 
was dropped from the full model. For grassland breeding birds, infor
mation on elevation, forest cover and mean temperature in the warmest 
quarter was important and complemented information provided by the 
DHIs. The combination of these factors best characterized the seasonally 
changing habitats grassland breeding birds are dependent on. We also 
caution that where grasslands are embedded in an agricultural matrix, 
the DHI values may be affected by agricultural practices and not only 
reflect grassland GPP. 

While surrogates for cumulative DHI could be found among the 
environmental and climatic variables, this was not the case for minimum 
DHI, which was important in models of all seven functional guilds. This 
indicates that minimum DHI provides unique information about habitats 
that the other environmental or climatic datasets missed. This was also 
the case for the variation DHI for three guilds where it made an 
important contribution and stayed in the top-ranked model. 

The inclusion of climate data did not substantially enhance model 
performance for most guilds. For the ground nesting guild, the addition 
of isothermality was important. However, for both the ground nesting 
and early successional guilds, combining DHIs with environmental and 
climatic variables only increased model performance by 6 and 8 per
centage points. Across the globe, species richness derived from range 
maps is also only moderately correlated with climate indices (Radeloff 
et al., 2019). Nevertheless, we found that for some guilds, climate fac
tors did improve model performance, even though climate affects 
vegetative productivity and is therefore captured by the DHIs, to some 
extent. 

4.2. Interannual variation of models and time lags 

Plotting the percentage of variation explained in the overall model 
and for each individual variable in each year allowed us to assess fluc
tuations in model performance over the study period of 2003 to 2013. 
Our work improves upon previous applications of DHIs, which were 
limited to composite indices of multiple years of data, and which could 
not be used to analyze annual changes in species responses (Hobi et al., 
2017). Interannual differences in overall variation explained ranged 

Table 3 
Coefficient estimates of poisson GLMs comparing bird richness for seven functional groups with DHI metrics (n = 5), across all years of the study period (2003–2013) 
aggregated in one data set using the total species richness and the mean values of all the covariates. Top-ranked DHI-only models are summarized with model degrees 
of freedom (df), weights (Wt), and adjusted deviance-squared (D2

adj).  

Bird guild Int. DHI cum sdDHI cum DHI min DHI var sdDHI var df Wt. D2
adj 

All  4.19  0.13  0.09 − 0.19  0.03 − 0.05 6  1.00  0.47 
Canopy  3.49  0.16  0.12 − 0.24  0.06 − 0.05 6  1.00  0.52 
Grass  1.43  − 0.33  − 0.21 –  0.32 − 0.09 5  0.79  0.49 
Ground  3.09  0.11  0.05 − 0.23  – − 0.04 5  0.66  0.38 
Permanent  2.64  0.07  0.09 − 0.02  − 0.22 − 0.06 6  1.00  0.35 
Succession  2.71  0.03  0.10 − 0.30  − 0.15 − 0.05 6  0.56  0.20 
Wood  3.17  0.41  0.20 − 0.33  0.11 − 0.08 6  1.00  0.49  

Table 4 
Coefficient estimates of poisson GLMs comparing bird richness for seven functional groups with DHIs and selected environmental and climatic variables (n = 14), 
across all years of the study period combined (2003–2013). Top-ranked models are summarized with model degrees of freedom (df), fit statistics (logLik, BIC), weights 
(Wt), and adjusted deviance-squared (D2

adj).  

Bird guild Int. DHI 
cum 

sdDHI 
cum 

DHI 
min 

DHI 
var 

sdDHI 
var 

Elev Forest Shrub sd 
CHM 

ISO MT 
WarmQ 

PS P 
WarmQ 

df Wt. D2
adj 

All  4.19  –  0.03 − 0.11  – − 0.03 –  0.15  0.09  0.08 − 0.04 –  0.03  – 9  0.96  0.58 
Canopy  3.48  –  0.05 − 0.16  – − 0.03 –  0.20  0.12  0.08 – − 0.04  –  – 8  0.87  0.64 
Grass  1.38  –  – − 0.38  0.13 − 0.08 − 0.25  − 0.53  –  – – − 0.26  0.12  0.10 9  0.82  0.67 
Ground  3.09  –  – − 0.11  – − 0.03 –  0.04  –  0.08 − 0.05 –  –  – 6  0.94  0.44 
Permanent  2.64  0.10  – − 0.17  − 0.20 − 0.04 –  –  0.07  0.13 – –  0.08  – 8  0.96  0.46 
Succession  2.71  –  – − 0.18  − 0.14 − 0.04 –  –  –  0.11 – –  –  − 0.05 6  0.99  0.28 
Wood  3.11  –  0.05 − 0.07  – – 0.10  0.64  0.32  0.18 − 0.11 –  –  – 8  0.71  0.75  
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from 3 to 7 percentage points. The amount of variation explained by 
individual predictors fluctuated even more over time, with changes in 
the amount of variation explained of up to 19 percentage points. How
ever, the time period the DHIs are available was too short to run trend 
analyses and assess a direction of the changes. 

The one-year lag models performed similarly to same-year models. 
We predicted that we would observe lag-effects, because bird occupancy 
and reproductive success may depend heavily on short-term, interan
nual fluctuations in precipitation and temperature (Christman, 2002; 
Englert Duursma et al., 2019). Climatic factors during the year or years 
preceding a given breeding season are likely to affect vegetation pro
ductivity and thus the conditions experienced by birds during the 

breeding season (Gorzo et al., 2016). Additionally, with the increasing 
frequency and severity of extreme weather events, we expected climate- 
mediated vegetation changes to alter associated bird communities 
(Albright et al., 2010; Bateman et al., 2016a). However, the time period 
that we evaluated may have been too brief to capture lag-effects. 

4.3. The use of DHIs as biodiversity indicators 

The multi-year composite MODIS DHIs have been tested in various 
ecosystems including tropical birds in Thailand (Suttidate et al., 2019), 
moose abundance in Russia (Razenkova et al., 2020), and amphibians, 
birds and mammals across the globe (Coops et al., 2018, 2019; Radeloff 

Fig. 2. Time series of hierarchical partitioning of same-year, annual Poisson models of bird richness, for seven functional guilds. (a) Comparison of total explained 
variance among models using DHIs only vs. DHIs with environmental variables (ENVs). Individual contribution of (b) DHIs and (c) the DHIs in combination with 
ENVs adding up to 100% of the explained variance. (Data from 1071 permanent BBS routes with CHM data.) 
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et al., 2019). In general, the DHIs are well correlated with species 
richness and density for different taxa. However, the annual DHIs that 
we present here have inherent advantages over other environmental 
datasets more commonly used for biodiversity assessments. They are 
calculated based on satellite data with a 1-km resolution and are 
smoothed for noise reduction, which is important when working with 
annual data. This makes them more robust than other global data sets, 
which are typically point-based (e.g., weather stations), and must be 
interpolated to provide information for all locations. 

We demonstrate the relevance of the annual DHIs for biodiversity 
science through their ability to capture habitat properties that are not 

captured by other environmental and climatic variables. The annual 
DHIs summarize the three key measures of vegetative productivity over 
the course of a year that are most closely related to biodiversity, and 
their annual temporal resolution makes them ideally suited when 
modeling annual biodiversity data. As such, the annual DHIs comple
ment the composite DHIs, which represent multi-year averages in pro
ductivity patterns, which are more appropriate in models of multi-year 
biodiversity data, such as species richness derived from range maps (e. 
g., Radeloff et al., 2019). Both annual and composite DHIs contribute to 
the goal of having globally available, free and openly accessible biodi
versity indicators available for scientific use (Scholes et al., 2012; 

Fig. 3. Time series of hierarchical partitioning of one-year lag effect Poisson models of bird richness, for seven functional guilds. (a) Comparison of total explained 
variance among models using DHIs only vs. DHIs with environmental variables (ENVs). Individual contribution of (b) DHIs and (c) the DHIs in combination with 
ENVs adding up to 100% of the explained variance. (Data from 1071 permanent BBS routes with CHM data.) 
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Pereira et al., 2013). We suggest that the DHIs are useful for conserva
tion planning, especially when identification of hotspots of richness of 
functional or other groups is a priority. The DHIs are freely available at 
http://silvis.forest.wisc.edu/dhis. 

5. Conclusion 

The annual Dynamic Habitat Indices (DHIs) calculated from MODIS 
GPP data represent a new remote sensing dataset of vegetation pro
ductivity for modeling biodiversity patterns and we found here that they 
have generally high explanatory power for bird species richness. For 
some bird guilds, especially grassland and woodland birds, the DHIs are 
best used in combination with other important environmental and cli
matic variables. For other guilds adding other explanatory DHIs did not 
improve model performance substantially. This shows the importance of 
combining the DHIs with environmental variables such as elevation, 
landcover, vegetation height, temperature and precipitation and testing 
which of the variables best characterize habitat heterogeneity to infer 
species richness. Dependent on the target species and knowledge of their 
life-history traits, we recommend adapting this list of environmental and 
climatic drivers. The high interannual variation of the models showed 
the importance of annually resolved biodiversity indicators. Especially 
in the context of global change, the ability to run models at an annual 
resolution is essential for assessments of changes over time. 
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