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Environmental heterogeneity enhances species richness by creating niches and provid-
ing refugia. Spatial variation in climate has a particularly strong positive correlation 
with richness, but is often indirectly inferred from proxy variables, such as elevation 
and related topographic heterogeneity indices, or derived from interpolated coarse-
grain weather station data. Our aim was to develop new remotely sensed metrics of 
relative temperature and thermal heterogeneity, compare them with proxy measures, 
and evaluate their performance in predicting species richness patterns. We analyzed 
Landsat 8’s Thermal Infrared Sensor data, calculated two thermal metrics during sum-
mer and winter, and compared their seasonal spatial patterns with those of elevation 
and topographic heterogeneity. We fit generalized least squares models to evaluate 
each variable’s effect in predicting seasonal bird richness using data from the North 
American Breeding Bird Survey. Generally speaking, neither elevation nor topographic 
heterogeneity were good proxies for temperature or thermal heterogeneity, respectively. 
Relative temperature had a non-linear relationship with elevation that was negatively 
quadratic in summer, but slightly positively quadratic in winter. Topographic hetero-
geneity had a stronger positive relationship with thermal heterogeneity in winter than 
in summer. The magnitude and direction of elevation–temperature and topographic 
heterogeneity–thermal heterogeneity relationships in each season also varied substan-
tially across ecoregions. Remotely sensed metrics of relative temperature and thermal 
heterogeneity improved the predictive performance of species richness models, and 
both thermal variables had significant effects on bird richness that were independent 
of elevation and topographic heterogeneity. Thermal heterogeneity was positively 
related to total breeding bird richness, migrant breeding bird richness and resident 
bird richness, whereas topographic heterogeneity was negatively related to total breed-
ing richness and unrelated to migrant or resident bird richness. Because thermal and 
topographic heterogeneity had contrasting seasonal patterns and effects on richness, 
they must be carefully contextualized when guiding conservation priorities.
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Introduction

Climate change is shifting species distributions and ecosys-
tems across the globe (Scheffers et al. 2016, Pecl et al. 2017). 
As a result, recent conservation approaches have focused 
on protecting features of landscapes that promote biodi-
versity instead of targeting priority species or ecosystems 
(Tingley et al. 2014). By conserving the ‘stage’, or the abiotic 
and geophysical conditions of the environment that drive 
species richness patterns and adaptive evolution, conserva-
tion actions can protect the evolutionary underpinnings of 
biodiversity, rather than the current snapshot of it (Anderson 
and Ferree 2010). Such approaches are particularly advanta-
geous when conserving species whose distributions are in flux 
due to climate change (Lawler et al. 2015, Elsen et al. 2018).

A major assumption underlying the suggestion to protect 
the ‘stage’ is that environmental heterogeneity (i.e. variation 
of environmental factors over space) is positively correlated 
with species richness because such variation increases niche 
space and provides refugia, thereby enhancing coexistence 
and persistence and promoting species diversity (Gómez et al. 
2016). Environmental heterogeneity further provides refugia 
and increases adaptive capacity by bolstering species’ abil-
ity to track climate change (Carroll  et  al. 2017). Indeed, 
empirical evidence does show positive relationships across 
taxonomic groups and at various spatial scales for a range of 
environmental variables (Field et al. 2009, Stein et al. 2014), 
suggesting that heterogeneity can predict patterns of biodi-
versity (Beier and De Albuquerque 2015). This is important 
for mapping biodiversity patterns, because species inventories 
are often incomplete, and species distribution data are orders 
of magnitude coarser than readily available environmental 
variables (Jetz et al. 2012).

The spatial patterns of abiotic and ecological features 
are commonly used to inform conservation strategies 
because they are easy to measure over large areas and are 
positively correlated with biodiversity (Tuanmu and Jetz 
2015, Farwell  et  al. 2020). Among environmental factors, 
topographic heterogeneity has a particularly strong posi-
tive influence on biodiversity patterns (Davies  et  al. 2007, 
Antonelli  et  al. 2018), presumably because topographically 
heterogeneous landscapes contain a diversity of microclimates 
that promote niche diversification, speciation and species col-
onization (Price et al. 2014, Steinbauer et al. 2016), and pro-
vide refugia through climatic buffering that promotes species 
persistence (Scherrer and Körner 2010). Consequently, topo-
graphically complex regions are considered global conserva-
tion priorities (Brooks  et  al. 2006) and are recognized for 
their potential to guide conservation planning under climate 
change (Ackerly  et  al. 2010, Comer  et  al. 2015, Zarnetske   
et al. 2019).

The assumption that topographic heterogeneity (variation 
in topographic parameters such as elevation, slope and aspect 
over space) is a good proxy for thermal heterogeneity (varia-
tion in temperature over space) makes sense because eleva-
tional gradients strongly affect thermal gradients (Mokhov 
and Akperov 2006). Indeed, elevation and topographic 

heterogeneity are often used as proxies for temperature and 
thermal heterogeneity, respectively, in macroecological and 
gradient studies (Rahbek and Graves 2001, Lookingbill and 
Urban 2003, Zarnetske et al. 2019). Moreover, interpolated 
temperature surfaces from weather stations that are fre-
quently used in biodiversity studies are often calculated using 
digital elevation models (DEMs) and are thus, in part, inher-
ently driven by elevation (Hijmans et al. 2005). Importantly, 
interpolated weather station data do not capture fine-scale 
topographic effects directly, and only – at best – indirectly 
when modeling weather data based on elevation.

However, the validity of using elevation as a proxy for tem-
perature may be questionable because temperature–elevation 
relationships can vary substantially throughout the year. For 
example, in the Rocky Mountains of North America, there 
is greater change in temperature over elevation in summer 
than in winter (Blandford et al. 2008). Similarly, elevation is 
more closely correlated with mean daily temperatures during 
spring than in other seasons in the Sierra Nevada due to tem-
perature inversions and local physiography (Dobrowski et al. 
2009). Yet this seasonal decoupling of temperature and eleva-
tion enables disentangling the effect of topographic versus 
thermal heterogeneity on biodiversity patterns and assessing 
their relative and independent contribution toward explain-
ing diversity patterns. Such assessments are important for 
ensuring that coarse-filter conservation strategies focused on 
capturing environmental heterogeneity are targeted appropri-
ately, but they require spatially-detailed, seasonal temperature 
data based on actual measurements.

Remotely sensed data from the Thermal Infrared Sensor 
(TIRS) onboard Landsat 8 provide temperature data inde-
pendent from elevation (Jimenez-Munoz  et  al. 2014). 
Furthermore, TIRS data are collected year-round, making 
it possible to calculate thermal metrics for discrete seasons, 
aiding ecological inference into the processes governing spe-
cies richness patterns and helping reveal the abiotic ‘stage’ on 
which species are acting, thus appropriately guiding conser-
vation priorities.

Our study had three major objectives. Our first objective 
was to use TIRS data to calculate metrics of relative tem-
perature and thermal heterogeneity for the conterminous US 
during summer and winter, the two seasons with the most 
contrasting temperature regimes and where most species 
typically experience the greatest temperature extremes and 
thermal stress. We refer to the TIRS data as ‘relative tem-
perature’ throughout because TIRS provides brightness tem-
perature rather than absolute land surface temperature values 
(Supporting information). We predicted that spatial pat-
terns in relative temperature and thermal heterogeneity vary 
among seasons, given pronounced temperature seasonality 
in the US, which varies with latitude and elevation (Janzen 
1967) (Table 1: P1).

Our second objective was to compare the seasonal spatial 
patterns of our thermal metrics with those of elevation and 
topographic heterogeneity across the conterminous US, and 
for each of its terrestrial ecoregions, to quantify the degree to 
which elevation and topographic heterogeneity can reliably 
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serve as proxies for temperature and thermal heterogeneity, 
respectively. We predicted that spatial patterns of relative 
temperature would correlate more strongly with elevation in 
the summer than in the winter, given greater variability in 
temperature gradients arising from temperature inversions 
in winter, which could lead to a more pronounced decou-
pling of temperature and elevation in winter (Blandford et al. 
2008) (Table 1: P2). Further, we predicted that spatial pat-
terns of thermal heterogeneity would correlate more strongly 
with topographic heterogeneity in the winter than in the 
summer, because enhanced vegetation productivity in sum-
mer creates microclimatic conditions that could lead to a 
more pronounced decoupling of thermal and topographic 
heterogeneity (Scheffers et al. 2013) (Table 1: P3).

Our third objective was to evaluate the relative correla-
tion of these variables in models of breeding and winter bird 
richness patterns across the conterminous US. We had four 
specific predictions related to this third objective. Our first 
prediction was that relative temperature would be negatively 
related to species richness in summer and positively related 
to species richness in winter (Table 1: P4). Bird distribu-
tions in northern latitudes often reflect species’ physiologies 
and thermal tolerances (Root 1988, Khaliq et al. 2014) and 
are therefore correlated with temperature and productivity 
(Hawkins et al. 2003), so we expected bird richness to be lim-
ited by hot temperatures in summer and cold temperatures 
in winter. Second, we predicted that relative temperature 
would more strongly correlate with bird richness patterns 
in summer than in winter, because more species are living 
closer to their upper thermal limits and therefore their ranges 
should be more directly governed by warmer temperatures 
(Araújo et al. 2013) (Table 1: P5). Third, we predicted that 
thermal heterogeneity would be a better overall predictor of 

richness patterns than topographic heterogeneity, because 
species richness and temperature patterns vary seasonally, 
while topography is constant (Table 1: P6). Fourth, we 
predicted that thermal heterogeneity would correlate more 
strongly with resident bird richness patterns than migratory 
bird richness patterns (Table 1: P7). While species under-
take long-distance migrations for many reasons other than 
maintaining their thermal niche (Somveille et al. 2018), the 
underlying factor is access to resources, which are influenced 
by seasonal temperature fluctuations (Gómez  et  al. 2016, 
Srinivasan  et  al. 2018), and migration reduces the need to 
exploit fine-scale thermal heterogeneity. Resident species 
must endure both summer and winter temperatures, poten-
tially resulting in a greater need for thermal heterogeneity 
that can provide microclimatic refugia and thermal buffering 
during winter (Latimer and Zuckerberg 2016).

Material and methods

Bird richness data

We analyzed data from the North American Breeding Bird 
Survey (BBS), the most extensive survey of breeding birds in 
the United States. In the BBS, breeding birds are surveyed 
annually by volunteers along 39.4 km routes (4027 in total), 
where the occurrence and abundance of all birds are recorded 
along with the date, time and weather conditions. Each route 
is surveyed once per year between late May and mid-July.

We identified each species’ migratory status (migratory or 
resident) using designations from the USGS (<www.mbr-
pwrc.usgs.gov/bbs/guild/guildlst.html>) and from the Birds 
of the World database when USGS data were unavailable 

Table 1. Predictions and rationales related to the influence of thermal metrics on seasonal bird species richness patterns tested in this study, 
grouped by major objective.

No. Prediction Rationale

Objective 1 – calculate seasonal metrics of relative temperature and thermal heterogeneity

P1 Spatial patterns in relative temperature and thermal heterogeneity 
vary seasonally

Pronounced temperature seasonality in the US that varies with 
latitude and elevation

Objective 2 – compare the seasonal spatial patterns of relative temperature and thermal heterogeneity with elevation  
and topographic heterogeneity

P2 Relative temperature is more strongly correlated with elevation  
in the summer than in the winter

Greater variability in thermal lapse rates over elevation in winter

P3 Thermal heterogeneity is more strongly correlated with topographic 
heterogeneity in the winter than in the summer

Enhanced productivity and vegetation in summer create more 
microclimates

Objective 3 – evaluate thermal and topographic variables in predicting breeding and winter bird richness patterns

P4 Relative temperature is negatively related to species richness in the 
summer and positively related to species richness in the winter

Bird distributions are strongly governed by species’ physiologies 
and thermal tolerances 

P5 Relative temperature has a stronger effect on bird richness patterns 
in summer than in winter

Most species are living closer to their upper thermal limits than 
their lower thermal limits

P6 Thermal heterogeneity is a stronger predictor of richness  
patterns than topographic heterogeneity

Species richness and thermal heterogeneity patterns vary 
seasonally, while topographic heterogeneity is a constant

P7 Thermal heterogeneity has a stronger effect on resident bird 
richness patterns than migratory bird richness patterns

Migratory species can better track seasonal temperature 
fluctuations, whereas residents need to exploit microclimates 
arising from fine-scale thermal heterogeneity
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(Billerman et al. 2020). We considered breeding bird assem-
blages to include all resident and short- and long-distance 
migratory species recorded during the BBS, with the excep-
tion of select species outlined below. Because BBS data are 
collected during summer, we considered wintering bird 
assemblages to include only resident species, i.e. those spe-
cies with stable year-round distributions that do not move 
between breeding and wintering periods, and excluded 
short- and long-distance migratory species. We ensured 
that patterns of resident species observed during the breed-
ing season appropriately reflected winter richness patterns 
by assessing the movement patterns of all resident species 
included in our analyses using the Birds of the World data-
base (Billerman et al. 2020) (Supporting information).

Prior to analysis, we filtered the BBS data to remove poor 
quality data and species not adequately surveyed by the BBS 
protocol (Supporting information). We then limited the fil-
tered data to observations between 2013 and 2018 to align 
with the temporal extent of our remotely sensed data sources. 
To summarize bird richness, we used BBS routes as the spatial 
unit of analysis (2865 routes) and calculated species richness 
for each route as the total number of unique species identified 
across all years. For analyses of summer richness patterns that 
included all species, we analyzed 545 688 observations of 337 
species (434 511 observations of 225 migratory species and 
111 177 observations of 112 resident species). For analyses of 
winter richness patterns, we restricted our analyses to the 112 
resident species for the reasons outlined above (Supporting 
information).

Remotely sensed thermal, elevation and  
land cover data

We build on our previous work developing metrics of rela-
tive temperature and thermal heterogeneity for winter using 
data from the Landsat 8 Thermal Infrared Sensor (TIRS) by 
developing these two metrics for distinct seasons (Elsen et al. 
2020a). Doing so allowed us to compare seasonal patterns 
and better understand variability in their relationships to 
commonly used proxy measures of elevation and topographic 
heterogeneity. Developing season-specific thermal metrics 
also enabled us to investigate how the relationships of these 
thermal variables with biodiversity patterns change seasonally.

TIRS has collected thermal imagery since it launched in 
February 2013. TIRS contains two bands (bands 10 and 
11, centered on 10.9 and 12 µm, respectively) that collect 
land surface temperature data at 100 m resolution (Jimenez-
Munoz  et  al. 2014). The data are resampled by the USGS 
to a spatial resolution of 30 m using cubic convolution and 
represent the highest resolution remotely sensed temperature 
data currently available for the conterminous US (Roy et al. 
2014). We analyzed thermal data from band 10 to minimize 
bias introduced by out-of-field stray light that affects band 11 
in particular (Barsi et al. 2014).

We calculated relative temperature and thermal heteroge-
neity for summer and winter separately to produce seasonal 
maps of relative temperature and thermal heterogeneity 

(Fig. 1a–d; Supporting information). Relative temperature 
is derived by assigning to the central pixel of a 5 × 5 pixel 
moving window the mean value of all 25 pixels for each ther-
mal image, and subsequently calculating the median value of 
those mean values across all images. Thermal heterogeneity 
is derived by assigning to the central pixel of a 5 × 5 pixel 
moving window the standard deviation of all 25 pixels for 
each thermal image, and subsequently calculating the median 
value of those standard deviation values across all images. For 
both variables, taking the median across all images within 
each season minimizes differences between adjacent Landsat 
paths and results in continuous and seamless maps across the 
conterminous US for both summer and winter. Our metric 
of thermal heterogeneity is not standardized by mean tem-
perature because our aim was to include this metric together 
with relative temperature in species richness models and stan-
dardizing thermal heterogeneity would increase collinearity 
of predictors. We note that our approach results in warmer 
areas having higher heterogeneity values, and we control for 
this by directly incorporating relative temperature in our 
species models so that we can assess the independent asso-
ciation between species richness and thermal heterogeneity 
(‘Modelling species richness’ below).

We analyzed elevation data from a void-filled DEM pro-
duced by the NASA Shuttle Radar Topography Mission 
(SRTM) at 1 arc-second (30-m) resolution, which matches 
the spatial resolution of the TIRS data (Fig. 1g). We also 
derived a metric of topographic heterogeneity, analo-
gous to thermal heterogeneity, by calculating spatial varia-
tion in the continuous heat-insolation load index (CHILI) 
(Theobald et al. 2015). CHILI is a modified version of the 
heat load index (HLI), which combines slope, aspect and 
latitude to estimate potential annual direct incident radia-
tion and thereby captures microclimatic diversity (McCune 
and Keon 2002). In contrast to HLI, CHILI explicitly incor-
porates latitude and uses a 22.5° ‘folding’ to better capture 
evapotranspiration patterns than the original 45° of the HLI 
(Theobald et al. 2015). CHILI thus acts as a proxy for the 
effects of insolation and topographic shading on evapotrans-
piration. We calculated topographic heterogeneity by assign-
ing the standard deviation of the CHILI values of all pixels in 
a 5 × 5 pixel moving window to the central pixel (Fig. 1h). 
The standard deviation of CHILI is highly correlated with 
a metric of spatial variability in elevation known as the ter-
rain ruggedness index (Riley et al. 1999), but is a more direct 
proxy of thermal heterogeneity.

To investigate seasonal relationships between relative tem-
perature and elevation, and between thermal heterogeneity 
and topographic heterogeneity across the conterminous US 
(Table 1: P2 and P3), we fit general linear models to 5000 
randomly distributed data points across the US, with eleva-
tion and topographic heterogeneity as predictors of relative 
temperature and thermal heterogeneity, respectively. We 
included a squared term for elevation to accommodate non-
linearities, assessed the log–log relationship between topo-
graphic and thermal heterogeneity because data were skewed, 
and repeated this process in summer and winter for a total of 
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four models (Supporting information). To investigate these 
relationships at finer spatial scales, we parameterized these 
models for each Level III ecoregion (Omernik and Griffith 
2014). To assess how the relationships varied between seasons, 
we calculated Spearman’s correlation coefficients between 
elevation and relative temperature and between topographic 
heterogeneity and thermal heterogeneity for each ecoregion 
in each season.

To evaluate the relative effect of our thermal and topo-
graphic metrics in predicting breeding and winter bird 

richness patterns across the conterminous US (Table 1: P4–
P7), we summarized each predictor variable at the scale of BBS 
routes. For each of our thermal and topographic variables, we 
calculated the mean value within a 19.7 km radius of each 
BBS route’s centroid. We chose a 19.7 km radius because it 
encompasses an entire BBS route and because georeferenced 
maps of BBS routes were unavailable for all of our routes, 
which prohibited us from accurately circumscribing smaller 
areas from which to summarize environmental variables with 
confidence. Our approach is thus conservative by not making 

-15°C

-5
0
5
10
15
20
25
30
35
40
45

-60°C

-50
-45
-40
-35
-30
-20
-10
0
11

100 m
400
700
1000
1300
1600
2000
2500
3100
4000

2
4
6
8
10
12
14
16
18
20

-.015
-.01
-.005
-.0025
-.00125
0
.00125
.0025
.005
.01

3
8
13
18
26
32
41
52
69
1260 1,000500 km

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1. Maps of winter relative temperature (a), winter thermal heterogeneity (b), summer relative temperature (c), summer thermal 
heterogeneity (d), seasonal differences in relative temperature (e), seasonal differences in thermal heterogeneity (f ), elevation (g) and topo-
graphic heterogeneity (h) for the conterminous US. Maps in (a–f ) based on thermal satellite imagery from Landsat 8 (TIRS band 10), (g) 
based on satellite imagery from SRTM and (h) based on SRTM-derived continuous heat-insolation load index. Black areas in maps have 
no data due to masking out cloud, snow, ice and water bodies. Seasonal thermal heterogeneity differences in (f ) are divided by mean relative 
temperature on the original brightness temperature scale (0.1 K) and are relative to summer thermal heterogeneity. Thus, the scale for (f ) 
should be interpreted with respect to the relative, scalar differences among values (i.e. redder tones reflect pixels where thermal heterogeneity 
is greater in summer, while bluer tones reflect pixels where thermal heterogeneity is greater in winter).
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additional assumptions about route locations, and follows 
convention used in route-level analyses of BBS data (Flather 
and Sauer 1996, Pidgeon et al. 2007, Rittenhouse et al. 2012, 
Elsen et al. 2020a).

We also summarized predictors related to land cover at the 
scale of BBS routes. The spatial distribution of land cover can 
drive bird richness patterns because most species tend to have 
strong habitat associations with one or more land cover types. 
We controlled for this variation by summarizing 2016 USGS 
National Land Cover Data (NLCD). We calculated the pro-
portions of three land cover types that constitute natural 
habitat for most North American birds, i.e. forest (including 
deciduous, evergreen and mixed forest), grassland and shru-
bland, and excluded land cover types associated with human 
activities and development, including agricultural lands and 
urban areas. We also checked to ensure that the location of 
BBS routes were not significantly biased with respect to our 
environmental predictors (Supporting information).

Modelling species richness

We fit a series of generalized least squares (GLS) models 
with our environmental variables as predictors and different 
groups of species as five different response variables, for a total 
of five model sets using the ‘mgcv’ package (Wood 2017) in R 
ver. 3.6.1. Each model set included elevation, a squared term 
for elevation to account for established non-linear relation-
ships between bird richness patterns over elevation (McCain 
2009), topographic heterogeneity and land cover variables 
as predictors. Three model sets additionally included our 
summer-derived thermal metrics as predictors, and separately 
used breeding (migrant and resident) bird richness, migrant 
bird richness and resident bird richness as the response vari-
able. A fourth model set included our winter-derived ther-
mal metrics as predictors, and resident bird richness as the 
response variable. Finally, a fifth model set included all ther-
mal predictors (summer and winter) and breeding bird rich-
ness as the response variable (Supporting information). All 
model sets included squared terms for relative temperature to 
account for non-linearities in richness patterns akin to those 
established for elevation.

For each model set, we fit models using all possible com-
binations of predictors, yielding 512 models for each of the 
first four model sets, and 4096 models for the fifth model 
set (a total of 6144 models). We assessed collinearity of our 
predictors prior to model fitting using Spearman’s correlation 
coefficients (r) and retained all predictors in our model set 
because pairwise correlations were generally low (mean |cor-
relation| = 0.31) (Supporting information). Additionally, we 
calculated variance inflation factors, which were < 5 in all 
cases, indicating an acceptable degree of multi-collinearity for 
use in our models (O’Brien 2007) (Supporting information). 
We centered and standardized all predictors to enable coef-
ficient comparisons and initially fitted models using maxi-
mum likelihood estimation to enable ranking models based 
on Bayesian information criterion (BIC), which penalizes 
over-parameterized models.

Once we selected the top-ranked model for each model set 
based on BIC, we refitted each model using restricted maxi-
mum likelihood (REML) estimation to provide unbiased 
coefficient estimates (Züur et al. 2009). To directly account 
for spatial autocorrelation, we fitted models using exponen-
tial, spherical, linear, ratio and Gaussian spatial correlation 
structures with the geographic coordinates (latitude and lon-
gitude) of each BBS route centroid, and including a ‘nugget’ 
effect. We then compared models fitted with and without 
spatial correlation structures. In all cases, including spatial 
correlation structures improved model fit over models with-
out spatial correlation structures (Supporting information), 
and inspection of variograms of the residual of the models 
with spatial correlation structures revealed that the residu-
als formed a horizontal band of points indicating spatial 
independence (Supporting information) (Züur et al. 2009). 
Using a multivariate framework and incorporating the spa-
tial structure of our predictor variables through the use of 
spatial correlation structures helped to isolate the non-spatial 
effects of our predictors on bird richness and was important 
to reduce erroneous correlations arising from spatially-struc-
tured variables (Beale et al. 2010, Currie et al. 2020).

We selected top-ranked models with the best-fitting spa-
tial correlation structure to compare effect sizes (with stan-
dard errors) of our predictor variables for each species group 
and predictor set as a means of assessing the contribution 
of each variable in predicting bird richness patterns. As a 
second way of investigating relative variable importance of 
our predictors, we applied hierarchical partitioning to cal-
culate the independent and joint contributions of each pre-
dictor towards the total variance explained by the model 
(Supporting information).

Results

Consistent with our first prediction, patterns of both relative 
temperature and thermal heterogeneity varied considerably 
between winter and summer (Fig. 1). During winter, relative 
temperature exhibited a more prominent latitudinal gradient 
(Fig. 1a), whereas during summer it showed a more promi-
nent longitudinal gradient (Fig. 1c). Across the contermi-
nous US, relative temperature showed a significant negative 
quadratic relationship with mean elevation during summer 
and a slight negative relationship with mean elevation dur-
ing winter, which was consistent with our second prediction. 
Differences in this relationship were strongest below 2000 m, 
where relative temperature increased markedly with eleva-
tion in summer, yet subtly declined with elevation in winter 
(Fig. 2a). We observed similar seasonal contrasts in elevation 
versus relative temperature correlations at the ecoregion scale, 
with the magnitude and direction of correlation being highly 
variable among ecoregions (Fig. 3, Supporting information). 
For example, several ecoregions in the mid-western US, in the 
Pacific Northwest, in parts of the eastern Rockies, and in the 
south had positive elevation–temperature relationships during 
summer, but negative relationships during winter (Fig. 3a, c).
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Thermal heterogeneity also showed nuanced spatial pat-
terns across the conterminous US across seasons, with pat-
terns changing seasonally (Fig. 1). For example, the North 
American deserts, southeast and northeast generally exhib-
ited greater thermal heterogeneity in winter, whereas sum-
mer thermal heterogeneity was more pronounced in the 
Central Valley of California, the Appalachian Mountains 
and the Pacific Northwest. This led to contrasting seasonal 
correlations between topographic and thermal heterogene-
ity in associated ecoregions, with negative correlations dur-
ing summer and positive correlations during winter (Fig. 3b, 
d). Across the conterminous US, consistent with our third 
prediction, topographic heterogeneity had a stronger posi-
tive relationship with thermal heterogeneity in winter than in 
summer (Fig. 2b), but showed little directionality of change 
across seasons (Fig. 2d). The US-wide analysis also masks, 
to some degree, the complex and sometimes opposing rela-
tionships between both topographic and thermal variables 
that are apparent at the scale of individual ecoregions (Fig. 3, 
Supporting information).

Within each set of species richness models, there was no 
model that ranked as similar (ΔBIC < 2) to the top-ranked 
model, so we present results from the top-ranked model in 
each set (Burnham and Anderson 2002). Consistent with 
our fourth prediction, summer relative temperature was 
strongly negatively associated with breeding species richness, 
but counter to this prediction, winter relative temperature 
showed a weak negative association with resident species 
richness during winter (Fig. 4). In our model containing all 
thermal predictors from both seasons, we found that summer 
relative temperature had a stronger negative effect on breed-
ing species richness than winter relative temperature, which 
was consistent with our fifth prediction (Fig. 4).

Compared with topographic heterogeneity, summer ther-
mal heterogeneity was a stronger predictor of breeding spe-
cies richness and winter thermal heterogeneity was a stronger 
predictor of resident species richness during winter, consis-
tent with our sixth prediction (Fig. 4). While we had no a 
priori expectation as to the relative effect of thermal hetero-
geneity on breeding richness, we found that winter thermal 
heterogeneity had an effect size that was comparable to sum-
mer thermal heterogeneity. Counter to our final prediction, 
summer thermal heterogeneity had a larger effect on migrant 
species than on resident species, though both migrant and 
resident species richness were positively related to summer 
thermal heterogeneity, and resident species richness was also 
positively related to winter thermal heterogeneity.

Among the four model sets that incorporated summer 
thermal predictors, relative temperature consistently had a 
greater independent effect on richness patterns than thermal 
heterogeneity for all species groups (Supporting informa-
tion). Furthermore, with the exception of resident species, 
relative temperature had a greater independent effect on rich-
ness patterns than mean elevation. The independent effect of 
summer thermal heterogeneity was similar to that of topo-
graphic heterogeneity for all species groups. However, winter 
thermal heterogeneity had a greater independent effect than 
topographic heterogeneity on resident species during winter.

Discussion

Using thermal satellite imagery from Landsat 8 TIRS, we 
developed new metrics of relative temperature and thermal 
heterogeneity, capturing distinct patterns across seasons. 
Our metrics are based on actual measurements, not interpo-
lations of weather station data, which confers clear advan-
tages over proxy variables such as elevation or topographic 
heterogeneity in models of bird species richness. While our 
metrics were correlated with elevation and topographic het-
erogeneity, we found that relationships were non-linear, that 
both the strength and the direction of these relationships 
differed profoundly between seasons (Fig. 1, 2), and that 
relationships varied considerably among ecoregions (Fig. 3). 
In other words, the suitability of elevation and topographic 
heterogeneity as proxies for relative temperature and thermal 
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Figure 2. Seasonal relationships between elevation and relative tem-
perature (a) and between log-transformed topographic heterogene-
ity and log-transformed thermal heterogeneity (b) based on 5000 
random samples of predictors (summer points in red, winter points 
in blue). Colored lines are fits of a linear model (in (a), with a qua-
dratic term for the independent variable), with shaded regions 
depicting 95% confidence intervals. Heat maps show seasonal 
change (with respect to summer) in relative temperature (c) and 
thermal heterogeneity (d) with elevation binned by 50-m of eleva-
tion and colored by the number of random samples.
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heterogeneity vary considerably over space and time within 
the conterminous US.

Relative temperature was more strongly related with eleva-
tion during summer, showing a hump-shaped pattern during 
this season (Fig. 2a). This was somewhat surprising given that 
elevation is negatively correlated with temperature: globally, 
the wet adiabatic lapse rate varies between 3.5 and 6.5°C km−1 
of elevation (compared to a dry adiabatic lapse rate of 9.8°C 
km−1 of elevation), with a global average of approximately 
6.2°C km−1 of elevation (La Sorte and Jetz 2010). During 
winter, relative temperature declined nearly monotonically 

with elevation, but with a lapse rate of roughly half the 
global average (Fig. 2b). Indeed, lapse rates are affected by 
a host of factors, including latitude, longitude, aspect, 
weather conditions and pollution, among others (Pepin et al. 
1999, Whiteman  et  al. 1999, Blandford  et  al. 2008), and 
vary significantly among the mountain ranges of the world 
(Elsen  et  al. 2020b). A closer investigation of the relation-
ship between relative temperature and elevation across ecore-
gions revealed that only a few individual ecoregions exhibited 
a hump-shaped pattern during summer (Supporting infor-
mation), suggesting that the conterminous US patterns are 
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likely mostly the results of interactions between differences in 
elevation and day length across longitude and latitude at the 
spatial scale of the US, and by influences associated with local 
weather (e.g. fog) and land cover.

There are several potential mechanisms for the variation 
in thermal lapse rates that we found. Seasonal differences 
in thermal lapse rates also occur in other regions, e.g. in 
China (He et al. 2018), the Himalayas (Kattel et al. 2015), 
Mexico (Xiang  et  al. 2014) and the US (Dobrowski  et  al. 
2009, Minder  et  al. 2010). Yet there is large variability in 
seasonal lapse rate patterns: summer lapse rates are higher 
than winter rates in China, and differences are related to 
aspect, solar zenith angle and radiation, and vegetation cover. 
As vegetation and solar zenith angle increases, surface tem-
perature lapse rate decreases, and lapse rates are highest on 
southern aspects (He  et  al. 2018). The influence of solar 
radiation on thermal lapse rates interacts with elevation and 
season: high solar radiation at high elevations during summer 
in the Himalayas reduces the thermal lapse rate compared 
to winter (Kattel et al. 2015). In the Cascade Mountains of 
the US, lapse rates are smallest in late-summer minimum 
temperatures and largest in late-spring maximum tempera-
tures, and strongly related to aspect (Minder et al. 2010). We 
found a similar pattern for the Cascades ecoregion, with a 
more pronounced lapse rate in winter compared to summer 
(Supporting information), reflective of the overall US pattern 

(Fig. 2b). Elevational differences in humidity, radiative cool-
ing and cold air flows can also affect lapse rates (Kattel et al. 
2015, Córdova et al. 2018).

Because seasonal lapse rates vary due to vegetation, aspect, 
latitude, elevation and longitude (e.g. with respect to the 
proximity to maritime versus continental circulation pat-
terns), it is perhaps not surprising we found such wide varia-
tion in thermal lapse rates across the ecoregions of the US 
(Supporting information), which vary significantly in these 
and other parameters. This wide variation may also help 
explain why the continental US pattern showed striking non-
linearities in summer (Fig. 2a). Our results therefore suggest 
that elevation is not a good proxy for temperature – especially 
at the scale of the conterminous US – because their relation-
ship is sensitive to the regional abiotic and biotic context and 
differs among seasons.

We found that patterns of thermal heterogeneity differed 
markedly between winter and summer (Fig. 1). For example, 
thermal heterogeneity was more pronounced in mountain-
ous regions such as the Great Basin, the Coastal Range of 
California, the mountains of the southwest, and throughout 
the Appalachian Mountains in winter (Fig. 1f ). During sum-
mer, thermal heterogeneity was pronounced in the Central 
Valley of California, in the northern Rockies and in portions 
of the Cascades (Fig. 1f ). While we found a positive relation-
ship between topographic and thermal heterogeneity across 
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seasons at the scale of the US, this relationship was stronger 
in the winter than in the summer (Fig. 2b) and varied consid-
erably across seasons and by ecoregion (Fig. 3d, Supporting 
information).

Topographic heterogeneity also captures spatial patterns 
of abiotic factors other than temperature, such as variation 
in slope, aspect, solar radiation, precipitation, hydrology 
and geomorphology, among others (Peterson 2003, Luoto 
and Heikkinen 2008). Furthermore, thermal heterogeneity 
can be influenced by differences in land cover, such as roads, 
agriculture and human development. This helps explain why, 
for example, thermal heterogeneity can be high both in flat 
regions such as the California Central Valley (where fine-scale 
variation in land cover associated with field edges and a diver-
sity of crop types increases thermal heterogeneity) and in 
mountainous regions such as the Sierra Nevada (where steep 
elevational gradients drive thermal gradients and associated 
thermal heterogeneity). However, when comparing thermal 
heterogeneity among land cover classes, we found large varia-
tion within classes, but no consistent differences among land 
cover classes driving thermal heterogeneity at a continental 
scale (Supporting information). The high amount of varia-
tion may be one additional reason why topographic heteroge-
neity does not fully capture patterns of thermal heterogeneity.

Because relative temperature and thermal heterogeneity 
capture environmental variations that are distinct from eleva-
tion and topographic heterogeneity, these variables contrib-
uted independently and significantly to explaining variation in 
bird richness across the conterminous US (Fig. 4, Supporting 
information). We found that, for most of the species groups 
we considered, relative temperature was a better predictor 
of richness than elevation, and thermal heterogeneity was 
as good as or better than topographic heterogeneity (Fig. 4). 
This finding is generally in line with conclusions reached in 
a global study using coarser-resolution data that found that 
topographic heterogeneity and temperature were the most 
important predictors of bird richness patterns (Davies et al. 
2007). It is also consistent with recent research assessing the 
predictive performance of winter thermal heterogeneity on 
richness patterns of climate sensitive species across the con-
terminous US (Elsen et al. 2020a). Our results highlight the 
value of including variables related to both relative tempera-
ture and thermal heterogeneity in models of broad scale rich-
ness patterns.

Thermal heterogeneity was positively correlated with bird 
richness patterns in both winter and summer, making it a 
promising new metric for conservation planning. Similar 
conclusions have been reached for related but coarse-reso-
lution metrics of thermal heterogeneity and their influence 
on mammal richness patterns (Stein et al. 2015). Areas with 
high thermal heterogeneity can act as important refugia to 
buffer species against cold spells during winter (Latimer 
and Zuckerberg 2016) and heat waves during summer 
(Albright  et  al. 2011). Yet, we found that patterns of ther-
mal heterogeneity shift among seasons (Fig. 1f ), and these 
shifts vary strongly among regions (Fig. 2d), suggesting 
there may be tradeoffs in conservation prioritizations based 

on patterns of thermal heterogeneity from one season only, 
or when using proxy variables such as topographic hetero-
geneity (Supporting information). Our models including 
both summer and winter thermal heterogeneity suggest that 
both variables had significant and distinct positive effects on 
bird richness. Consequently, prioritizing areas characterized 
by high thermal heterogeneity in both seasons would best 
capture areas of greater overall breeding bird richness, while 
also supporting resident species. In the US, the Californian 
mountains and parts of the Rocky Mountains, Great Basin 
and southwest deserts have exceptionally high thermal het-
erogeneity year-round (Ackerly  et  al. 2010) (Fig. 5). Many 
of these regions closely align with priority regions for other 
terrestrial vertebrates, freshwater fish and trees (Jenkins et al. 
2015). Protecting and restoring habitat in these areas would 
likely provide particularly large benefits for biodiversity, espe-
cially for species threatened by climate change (Heller and 
Zavaleta 2009, Elsen et al. 2020a).

While data availability was generally high for calculat-
ing our thermal metrics during summer, the presence of 
clouds in winter in some geographical areas – such as the 
Midwest around Michigan, the northeastern US and parts of 
the northern Rockies – resulted in few images with which to 
make calculations (Supporting information). While our data 
processing workflow took several steps to minimize spatial 
and temporal biases in calculations (Supporting information) 
and gives confidence in our species richness model results at 
the spatial scale considered (i.e. within 19.7 km BBS buffers), 
it should be noted that applying our thermal metrics at finer 
spatial scales in geographies with poorer data coverage during 
winter should be done with care.

Another important consideration of our study is that we 
were unable to assess the degree to which short-distance, 
altitudinal and partial migrants might select features of the 
thermal environment for occupancy during winter. We had 
to restrict the portion of the analysis focusing on winter pat-
terns to resident species to ensure BBS data appropriately 
reflect richness patterns in winter, but this process inher-
ently excludes these migratory groups and prevents us from 
assessing how their richness dynamics might be influenced by 
the thermal environment. For example, altitudinal migrants 
track thermal conditions across seasons to occupy the same 
thermal niche throughout the year, whereas residents tend 
to have broader thermal niches, owing to them experiencing 
large seasonal fluctuations in temperature (Srinivasan  et  al. 
2018). Excluding short- and long-distance migrants from the 
winter analysis acts to artificially reduce richness in some por-
tions of the US, most notably the southernmost and north-
ernmost portions of the country, and these exclusions may 
have affected our results. It is possible that migrants, having 
different sensitivities to the thermal environment than resi-
dents, could be more strongly structured by relative tempera-
ture than thermal heterogeneity. We are unable to test this 
prediction directly using BBS data, but a previous study using 
data from the Christmas Bird Count, which contains short-
distance migrants and winter visitors in addition to perma-
nent residents, also found that thermal heterogeneity strongly 



11

predicted richness patterns (Elsen et al. 2020a). While these 
independent results give confidence in our conclusions, fur-
ther research linking fine-scale movement patterns of birds to 
thermal occupancy dynamics would help discern the impor-
tance of thermal heterogeneity for migrant species.

An additional caveat is that BBS data are collected along 
roads, which tend to be in less topographically complex por-
tions of the landscape, and thus it is possible that our topo-
graphic heterogeneity metric summarized within 19.7 km of 
the route centroid overestimates the topographic heteroge-
neity of the effective survey area. This could have resulted 
in underestimates of the effect of topographic heterogeneity 
on bird richness. Developing predictive models using more 
precise species occurrence records spanning elevational and 

thermal gradients would help further reveal their links with 
biodiversity.

High resolution digital elevation models have been avail-
able and widely used by ecologists to investigate biodiversity 
patterns for decades (Turner et al. 2003). Yet medium-resolu-
tion (30-m) thermal data from satellites have very rarely been 
used in biodiversity studies (Elsen et al. 2020a). Our results 
illustrate their potential for broad applications in future stud-
ies. The global availability of Landsat 8 TIRS data means that 
our metrics and analytical framework can easily be applied 
elsewhere on the globe to understand, for example, how the 
relative importance of the thermal environment for biodiver-
sity changes across geographical gradients (Srinivasan  et  al. 
2018). Further research is needed to understand how thermal 

(c)

(a) (b)Summer Winter

90th percentile

10th percentile

Year-round

Figure 5. Map of 90th and 10th percentiles of thermal heterogeneity values for summer (a), winter (b) and year-round (c). Regions in the 
90th percentile year-round constitute conservation priorities due to their positive correlations with species richness patterns in both summer 
and winter and likely high adaptation potential. By contrast, regions in the 10th percentile year-round reflect areas of risk because they offer 
few thermal niches, have a persistent lack of thermal refugia, and thus likely have low adaptation potential. Regions with 90th percentile in 
one season and 10th percentile in the other are rare and are mapped separately in the Supporting information.
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heterogeneity influences richness patterns of other taxonomic 
groups (Stein et al. 2014). Such studies would be important 
to understand the generality of utilizing thermal heterogene-
ity as a robust prioritization tool in conservation planning.
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Data from the Breeding Bird Survey are available at <www.
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