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Abstract.  Species loss is occurring globally at unprecedented rates, and effective conserva-
tion planning requires an understanding of landscape characteristics that determine biodiver-
sity patterns. Habitat heterogeneity is an important determinant of species diversity, but is
difficult to measure across large areas using field-based methods that are costly and logistically
challenging. Satellite image texture analysis offers a cost-effective alternative for quantifying
habitat heterogeneity across broad spatial scales. We tested the ability of texture measures
derived from 30-m resolution Enhanced Vegetation Index (EVI) data to capture habitat hetero-
geneity and predict bird species richness across the conterminous United States. We used
Landsat 8 satellite imagery from 2013-2017 to derive a suite of texture measures characterizing
vegetation heterogeneity. Individual texture measures explained up to 21% of the variance in
bird richness patterns in North American Breeding Bird Survey (BBS) data during the same
time period. Texture measures were positively related to total breeding bird richness, but this
relationship varied among forest, grassland, and shrubland habitat specialists. Multiple texture
measures combined with mean EVI explained up to 41% of the variance in total bird richness,
and models including EVI-based texture measures explained up to 10% more variance than
those that included only EVI. Models that also incorporated topographic and land cover met-
rics further improved predictive performance, explaining up to 51% of the variance in total
bird richness. A texture measure contributed predictive power and characterized landscape fea-
tures that EVI and forest cover alone could not, even though the latter two were overall more
important variables. Our results highlight the potential of texture measures for mapping habi-
tat heterogeneity and species richness patterns across broad spatial extents, especially when
used in conjunction with vegetation indices or land cover data. By generating 30-m resolution
texture maps and modeling bird richness at a near-continental scale, we expand on previous
applications of image texture measures for modeling biodiversity that were either limited in
spatial extent or based on coarse-resolution imagery. Incorporating texture measures into
broad-scale biodiversity models may advance our understanding of mechanisms underlying
species richness patterns and improve predictions of species responses to rapid global change.

Key words:  avian biodiversity, Breeding Bird Survey, conservation, Enhanced Vegetation Index; hetero-
geneity—diversity relationship; intermediate heterogeneity hypothesis; Landsat 8; satellite remote sensing; spe-
cies-energy theory.
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INTRODUCTION

Global change is causing precipitous declines in biodi-
versity (IPBES 2019), with current extinction rates
between 100 and 1,000 times higher than the historic
background rate (Pimm et al. 2014, Ceballos et al.
2017). Addressing this conservation challenge requires
accurate assessments of the factors that determine
broad-scale patterns of species diversity (Pereira et al.
2013, Jetz et al. 2019). Vegetation heterogeneity is an
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important determinant of species distributions and rich-
ness (MacArthur 1964), with similar or higher explana-
tory power than available energy or climatic factors for
predicting biodiversity (Bohning-Gaese 1997, Kerr and
Packer 1997, Stein et al. 2014). Heterogeneity can posi-
tively promote diversity by expanding niche space in
structurally complex environments (Tews et al. 2004),
increasing access to microhabitats that provide refugia
from adverse conditions and stochastic events (Keppel
et al. 2012, Robinson et al. 2016, Elsen et al. 2020), and
increasing isolation leading to genetic divergence and
speciation (Vuilleumier 1969, Graves 1985) through
mechanisms related to niche conservatism (Pyron et al.
2015).
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Quantifying environmental heterogeneity across large
areas using field-based methods is costly and logistically
challenging. Satellite remote-sensing data provide an
opportunity to generate heterogeneity metrics at regio-
nal to global extents (Nagendra et al. 2013, Rocchini
et al. 2015). Remotely sensed data have the advantage of
providing wall-to-wall mapping of continuous measures
of landscape characteristics, at resolutions relevant for
both species and land management (Kerr and Ostrovsky
2003, Kennedy et al. 2014). Measures of heterogeneity
derived from satellite imagery, such as topographic and
land cover metrics, effectively predict large-scale patterns
of biodiversity (Rahbek and Graves 2001, Coops et al.
2009). However, these common measures of environ-
mental heterogeneity have limitations. For instance,
topographic indices based on digital elevation models
are often used as proxies for variability in vegetation and
temperature, but are static, indirect measures of habitat
that cannot account for temporal dynamics (Rahbek
and Graves 2001, Ruggiero and Hawkins 2008). Simi-
larly, categorical land cover classifications provide
important information regarding between-class hetero-
geneity (Boulinier et al. 2001, van Rensburg et al. 2002),
but broadly aggregate habitat types and ignore variabil-
ity within land cover classes (Herold et al. 2008).

An alternative approach is to directly quantify envi-
ronmental heterogeneity using the spectral properties of
satellite imagery. Image texture is the visual effect pro-
duced by the spatial distribution and variation of spec-
tral values across the pixels of an image (Haralick et al.
1973, Hall-Beyer 2017). Image texture analysis holds
particular promise for quantifying within-habitat vari-
ability in structurally complex landscapes (Kayitakire
et al. 2006, Wunderle et al. 2007, Wood et al. 2012). In
local and regional studies, texture measures derived from
medium-resolution (30-m) satellite imagery effectively
predicted bird species richness within various habitat
types, including forests (Culbert et al. 2012, Suttidate
2016), desert-scrub ecosystems (St-Louis et al. 2009,
2014), and grasslands (Bellis et al. 2008, Culbert et al.
2012). Coarse-resolution (250-m) image texture mea-
sures derived from MODIS satellite imagery also helped
explain spatial variation in bird richness across the con-
terminous United States. (Tuanmu and Jetz 2015). How-
ever, there is currently a lack of studies using medium-
resolution texture measures to describe bird richness
patterns at macroecological scales, which is unfortunate,
because textures derived from 30-m imagery can capture
finer-scale heterogeneity of breeding habitats, which
strongly influence the distribution and abundance of
birds (Hepinstall and Sader 1997, St-Louis et al. 2009,
Culbert et al. 2012).

Texture measures derived from vegetation indices,
such as the normalized difference or the enhanced vege-
tation index (NDVI, EVI), are effective predictors of
bird species richness (St-Louis et al. 2009, Ozdemir et al.
2018). By quantifying the “greenness” of spectral ima-
gery, vegetation indices characterize energy available
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through photosynthesis and are strongly and positively
correlated with net primary productivity (Paruelo et al.
1997, Sims et al. 2006). Thus, such indices can be used to
test the species-energy theory, which predicts that
regions with higher overall productivity can support
more species and higher total abundances of individuals,
due to increased quantity and availability of resources
(Wright 1983, Currie 1991). While vegetation indices are
strong predictors of bird species richness at regional to
continental scales in their own right (Bailey et al. 2004,
Evans et al. 2006), deriving texture measures from these
indices provides additional information about spatial
patterns of energy availability and habitat heterogeneity
(St-Louis et al. 2009, Tuanmu and Jetz 2015). Thus, the
species-energy  theory and heterogeneity—diversity
hypotheses are not mutually exclusive; the challenge lies
in determining their relative importance and comple-
mentarity in explaining patterns of species diversity
(Hurlbert and Haskell 2003, Kreft and Jetz 2007, Coops
et al. 2009).

Bird species richness is an effective indicator of com-
plex, community-level response to environmental hetero-
geneity (Davies et al. 2007, Veech and Crist 2007). Birds
exhibit a wide range of space-use behaviors (Leonard
et al. 2008) and habitat associations across multiple spa-
tial scales (Warren et al. 2005, Mitchell et al. 2006).
Birds are also facing dramatic global declines (Gaston
et al. 2003, TUCN 2019). In North America, 37% of bird
species are under high risk of extinction without signifi-
cant conservation action (NABCI 2016). The ready
availability of bird richness and distribution data for
North America provides an opportunity to explore con-
tinental-scale relationships between species richness and
remotely sensed heterogeneity metrics. By doing so, we
can improve our understanding of large-scale landscape
characteristics that may be driving or limiting factors for
birds and other species (Flather and Sauer 1996, Hud-
son et al. 2017).

Our primary goal was to develop a suite of 30-m reso-
lution texture measures based on Landsat 8§ EVI imagery
as direct measures of vegetation heterogeneity and to
evaluate whether they increase explanatory power of
bird richness models at a near-continental scale. We pre-
dicted that our EVI-based heterogeneity metrics would
positively correlate with bird species richness, supporting
a positive heterogeneity—diversity relationship. Our sec-
ond goal was to assess whether EVI-based texture mea-
sures would improve the overall explanatory power of
bird richness models compared to models based on EVI
alone. Because habitat heterogeneity and available
energy both influence species richness, we predicted that
texture measures would have significant positive effects
on bird richness independent of the influence of EVI.
Our third goal was to evaluate the relative influence of
texture on bird richness patterns compared with produc-
tivity and other commonly used indices of environmen-
tal heterogeneity based on topography and land cover.
Again, we predicted that a texture measure would
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increase the fit of models that also included topographic
and land cover metrics, because EVI-based textures pro-
vide direct measures of environmental heterogeneity and
can capture variation within land cover classes.

METHODS

Image texture measures

We calculated a suite of texture measures based on
Landsat 8 EVI composite images available in Google
Earth Engine (GEE; available online).*> The 30-m resolu-
tion, 8-d EVI composite product (GEE Image ID
LANDSAT/LCS_LIT_8DAY_EVI) was generated from
Level LIT orthorectified scenes, using top-of-atmo-
sphere (TOA) reflectance that accounts for solar angle
and seasonal variation in Earth-Sun distance (Chander
et al. 2009). The EVI was calculated based on three
bands (near-infrared, red, and blue) of each image
(Huete et al. 2002). We selected EVI over NDVI because
it is less sensitive to soil background and atmospheric
effects and less prone to saturation at high levels of bio-
mass (Huete et al. 2002). To create a smooth composite
image for texture analysis, we extracted 90th percentile
EVI values from available images between May—Septem-
ber during 2013-2017, thereby characterizing peak
greenness of vegetation during the summer growing sea-
son while excluding spuriously high EVI values (Culbert
et al. 2009, Tuanmu and Jetz 2015). We masked pixels
covered by permanent water bodies using a static water
mask also derived from Landsat imagery (Hansen et al.
2013).

In image texture analysis, central pixels within a mov-
ing window are assigned a value based on the spectral
variability of neighboring pixels (Hall-Beyer 2017).
First-order textures are statistical summaries (e.g., mean,
variance) of pixel spectral values within the moving win-
dow, while second-order textures are based on the gray-
level co-occurrence matrix (GLCM) and thus take into
account the spatial arrangement and relationships
among neighboring pixels (Haralick et al. 1973). Using
GEE, we calculated one first-order and six second-order
texture measures from the 90th percentile EVI compos-
ite (see Table 1 for list of texture measures and descrip-
tions), which we selected based on their performance in
predicting local and regional bird richness patterns (St-
Louis et al. 2009, Culbert et al. 2012). We used a moving
window size of 5 x 5 pixels (2.25 ha), an area large
enough to encompass one or more typical breeding bird
territories (Leonard et al. 2008, Jones 2011) while cap-
turing relatively fine-resolution landscape features. We
selected a single moving window size for our analysis
because texture measures across varying window sizes
tend to be highly correlated and have similar relation-
ships with bird richness (St-Louis et al. 2006, Culbert
et al. 2012).

2 http://earthengine.google.org
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Ancillary environmental variables

To test how well texture measures predict bird richness
compared to more commonly used abiotic and biotic
predictors of biodiversity, we calculated two metrics
based on topography and three metrics based on land
cover. We analyzed elevation data from the National
Elevation Dataset (NED), which provides seamless ele-
vation coverage for the conterminous United States at 1
arc-second (~30 m) resolution (GEE Image ID USGS/
NED). We also derived the terrain ruggedness index
(TRI) from the NED, which quantifies topographic
heterogeneity by taking the square root of the sum of
squared differences between an elevation pixel and the
eight pixels surrounding it (Riley et al. 1999). To charac-
terize land cover composition, we analyzed 30-m resolu-
tion 2011 National Land Cover Data, also derived from
Landsat imagery (NLCD; GEE Image ID USGS/
NLCD). We focused on three dominant land cover
classes that provide habitat for terrestrial birds: forest
(deciduous, evergreen, and mixed classes combined),
shrubland, and grassland cover.

Breeding bird data

The North American Breeding Bird Survey (BBS;
Sauer et al. 2017) is a long-term, annual survey of ~3,000
routes across the United States and Canada. Volunteer
observers record all birds seen and heard during 50 3-
minute counts spaced evenly (0.8 km apart) along each
39.4-km route. Surveys are conducted during the height
of the breeding season between May and July, with addi-
tional guidelines for time of day and weather conditions
intended to increase detectability and reduce biases in
the data (Robbins et al. 1986). We removed surveys of
non-randomly established routes, surveys conducted in
inclement weather or outside of established date and
time ranges, and surveys that did not follow other BBS
sampling protocols based on the BBS quality codes. We
also removed surveys conducted by first-year observers
on a given route to reduce potential observer effects
(Kendall et al 1996).

We restricted our analyses to data collected during
2013-2017, i.e., all BBS data collected after the launch
of Landsat § that were available at the time we con-
ducted our analysis. For each BBS survey route within
the conterminous United States, we calculated route-
level species richness as the cumulative number of unique
species observed during the 5-yr period. We excluded
rare species with insufficient data (<30 observations),
species not adequately sampled by diurnal transect sur-
veys (i.e., raptors and crepuscular species), and species
associated with habitats under-sampled by BBS route
locations (i.e., marine, coastal, and freshwater species).
After pre-processing, 2,749 BBS survey routes remained
for analysis (Fig. 1), with a total of 535,676 observations
of 332 bird species (Appendix S1: Table S1). We ana-
lyzed total bird richness and richness of habitat
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TaBLE 1. Image texture measures, descriptions, and formulae.
Texture typet and name Description Formulaj
First-order measure —
Standard deviation dispersion of pixel values Z":“
Second-order measures of “contrast” e N N
Contrast (also called sum of exponentially weighted difference in values of adjacent pixels n? S p(i))
squares variance) n=0 i=1j=1
o ) ) ) ) ) N-1 (N N
Dissimilarity linear difference in values of adjacent pixels n > > pli,j)
n=0 i=1j=1
Homogeneity (also called inverse similarity of values between adjacent pixels; smoothness of the > ™ I_l_ 7 p(i,])
difference moment) image. i /
Second-order measures of “orderliness”
Entropy disorderliness (or “randomness”) in spatial distribution of pixel =3 > p(i,)) log(p(i,)))
values. i
Uniformity (also called angular orderliness in spatial distribution of pixel values S5 Ap(, j)}2
second moment) i
Second-order descriptive statistic
: P . o S S i) -ty
Correlation linear dependency of values on those of neighboring pixels ==

(0 = uncorrelated, |1|=perfectly correlated)

tFromHall-Beyer (2017).
‘tFromHaralick et al. (1973).

specialists within three broad habitat types for birds: for-
est, grassland, and shrubland (Appendix S1: Table S1).
We defined habitat specialists as birds known to primar-
ily occur in only one habitat type during the breeding
season, and determined specialization based on habitat
designations of major importance from BirdLife Inter-
national (IUCN 2019) and detailed species accounts
from Birds of North America (Rodewald 2015). Of the
332 species included, we identified 95 forest specialists
(29% of species evaluated), 16 grassland specialists (5%),
and 38 shrubland specialists (11%). Some species were
not affiliated with any of these three habitats, or were
affiliated with one or more habitats but were not identi-
fied as specialists.

Statistical analysis

To relate our remotely sensed data to bird species rich-
ness, we calculated the mean value of each environmen-
tal predictor within 19.7 km of the centroid of each BBS
route (sensu Flather and Sauer 1996, Pidgeon et al.
2007). We selected a radius one-half the length of a BBS
route to ensure that each sampled landscape would con-
tain the entire BBS route, and defined route centroids as
the center of the minimum bounding rectangle encom-
passing each route. Because BBS richness data con-
formed closely to a normal distribution (results not
shown), we used linear regressions to relate environmen-
tal predictors to bird richness. We included both linear
and quadratic terms of predictors in regression models
to account for potential nonlinear relationships between
bird richness and environmental variables. For all analy-
ses, we fitted models for all species combined and for
each species group (forest, grassland, and shrubland).

To test the performance of texture in predicting bird
richness, we first evaluated each texture measure individ-
ually in single-texture models, including both linear and
quadratic terms. We used coefficient estimates to assess
the strength and direction of relationships between each
texture and bird richness, and adjusted R? values to eval-
uate the explanatory power of models. We also used
results of single-texture models to inform which textures
to include in subsequent multivariate analyses. Because
different texture measures represent different landscape
characteristics and might complement each other to pre-
dict bird richness, we also tested models incorporating
multiple textures. However, because many texture mea-
sures are correlated (Baraldi and Parmiggiani 1995), we
checked for collinearity by calculating pairwise Spear-
man’s correlation coefficients. We found strong correla-
tions among some textures (Appendix S1: Fig. S1), and
thus only included uncorrelated textures (|r] < 0.7) in
multiple texture models.

To assess whether EVI-based textures of habitat
heterogeneity complement EVI as a measure of avail-
able energy in predicting bird richness, we assessed a
model including only EVI as a predictor. We then ran
a series of multiple linear regression models combin-
ing EVI with one or more textures as predictors.
Again, we first checked for collinearity and did not
find strong correlations between EVI and our suite of
textures (|Jr] range = 0.1-0.4; Appendix S1: Fig. S1).
We evaluated adjusted R values to compare the pre-
dictive performance of models with and without tex-
tures. Using the best performing model based on the
adjusted R?, we produced predictive maps of total
breeding bird richness and for habitat specialists
within each habitat group.
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To evaluate the relative importance of texture com-
pared to more commonly used measures of environmen-
tal heterogeneity in predicting bird richness, we fitted a
global model including our two topographic metrics (el-
evation, TRI), three land cover metrics (proportion of
forest, grassland, and shrubland cover), productivity
(EVID), and a single-texture measure (dissimilarity). We
opted to use dissimilarity because it was the best predic-
tor in single-texture models for total species richness
and is an intuitive metric of habitat heterogeneity. We
centered and standardized all predictors to allow for
unbiased comparisons of effect sizes. We then generated
a set of linear regressions including all possible combi-
nations of these seven predictor variables and their
quadratic terms. Because of the large number of vari-
ables in the global model, we ranked models using the
Bayesian information criterion (BIC), which penalizes
over-parameterized models. Prior to fitting models, we
assessed collinearity among predictors (Appendix S1:
Fig. S2). The highest correlation was r = —0.72,
between EVI and proportion of shrubland cover, with
all other correlations || < 0.7. As an additional
collinearity check, we calculated variance inflation fac-
tors (VIFs) for each predictor in top-ranked models and
removed predictors with VIFs above a cut-off value of
10 (O’Brien 2007). We used adjusted R” values to assess
the total explanatory power of top-ranked models, and
evaluated the contribution of each variable in predicting
bird richness by plotting their effect sizes (standardized
regression coefficients) with 95% confidence intervals.
To further evaluate the relative importance of predic-
tors, we used hierarchical partitioning to assess the inde-
pendent and joint contributions of each predictor to
overall variance explained (Chevan and Sutherland
1991). In hierarchical partitioning analysis, joint
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Map of the conterminous United States, illustrating Breeding Bird Survey (BBS) route locations (2013-2017).

contributions represent the explanatory power of each
predictor that cannot be disentangled from other predic-
tors due to multicollinearity, while independent contri-
butions represent the variance uniquely explained by
each predictor (Mac Nally 2000).

Last, we checked for potential biases arising from spa-
tial autocorrelation of BBS route locations by calculat-
ing Moran’s [ and analyzing model residuals in
correlograms using 500 permutations. All statistical
analyses were performed in R version 3.5.1 (R Core
Team 2018; see Appendix S1: Table S2 for list of R pack-
ages used).

REsuLTs

Texture characterization of habitat heterogeneity

Texture measures based on Landsat 8 EVI imagery
reflected general patterns of vegetation productivity
across the conterminous United States, but provided
additional information on its spatial patterning (Fig. 2).
Texture measures captured differences and transitions
between land cover types, as well as within-habitat
heterogeneity categorized as homogeneous by land cover
classes (Fig. 3). For example, in a heavily forested land-
scape in the central Appalachian region, texture mea-
sures were highest in mixed forests and at transitions
between forest types, but they also captured heterogene-
ity in areas classified as homogeneous deciduous forest
(Fig. 3a). In the mixed-grass Moreau Prairie of South
Dakota, texture measures captured heterogeneity in veg-
etation among rolling plains and buttes in a landscape
predominantly classified as homogeneous grassland
(Fig. 3b). Similarly, in a desert-scrub landscape in the
Chihuahuan desert, texture measures revealed
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h) Correlation

FiG. 2. Maps of the conterminous United States, showing (a) peak greenness enhanced vegetation index (EVI) based on Land-
sat 8 satellite imagery, and patterns of habitat heterogeneity captured by (b) first-order standard deviation texture and (c-h) six sec-
ond-order textures derived from the EVI layer shown in panel a. See Table 1 for texture descriptions.

vegetation heterogeneity in and around drainages west heterogeneity in human-modified landscapes. For exam-
of the Pecos River, within areas classified as homoge- ple, in the Central Valley of California, texture measures
neous shrubland (Fig. 3¢). In addition to the hetero- highlighted heterogeneity of green spaces within subur-
geneity of natural habitats, texture measures captured ban areas, along road corridors, and in edge habitats
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Fic. 3. Data layers corresponding to four sampled landscapes (a—d), illustrating different features of habitat heterogeneity cap-
tured by texture (presented here for “dissimilarity”). Circles represent 19.7-km radius landscapes surrounding Breeding Bird Survey
(BBS) routes (shown as magenta lines). First column: true color satellite images (DigitalGlobe 0.5-m imagery, obtained from ESRI
World Imagery); second column: peak greenness enhanced vegetation index (EVI); third column: dissimilarity texture (higher values
indicate greater heterogeneity); fourth column: land cover classes from the 2011 National Land Cover Database (Homer et al.
2015). Four distinct habitat types are represented: (a) heavily forested landscape in the central Appalachian Mountains of West Vir-
ginia (38°28'54” N, 80°3'1” W); (b) mixed-grass prairie in the Great Plains of northwest South Dakota (45°10'43"” N, 102°44'5” W),
(c) arid shrubland in the Chihuahuan Desert of western Texas (30°46'44" N, 103°23'23” W); (d) croplands and suburbs in the Cen-
tral Valley outside of Modesto, California (37°39'30” N, 121°13'41” W). [Correction added on July 30, 2020, after first online publi-
cation: Fig. 3 was replaced following initial release due to an author error which provided an incorrect final version. The missing
entry for water/wetlands has been restored in the key and the imagery in row (c) was replaced with the correct images from the ver-
sion accepted for publication]. [Color figure can be viewed at wileyonlinelibrary.com]
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TaBLE 3. Adjusted R values for linear regression models relating bird species richness with enhanced vegetation index (EVI)

alone, and combined with single and multiple texture measures.

EVI + texture models All species  Forest specialists ~ Grassland specialists ~ Shrubland specialists
EVI only 0.31 0.19 0.003 0.46
EVI + single texture
EVI + Standard deviation 0.36 0.22 0.07 0.46
EVI + Contrast 0.33 0.21 0.04 0.46
EVI + Dissimilarity 0.37 0.23 0.09 0.46
EVI + Homogeneity 0.39 0.29 0.16 0.47
EVI + Entropy 0.37 0.28 0.13 0.47
EVI + Uniformity 0.36 0.28 0.07 0.47
EVI + Correlation 0.34 0.23 0.02 0.48
EVI + multiple textures
EVI + Contrast + Homogeneity + Correlation 0.41 0.35 0.17 0.49
EVI + Dissimilarity + Entropy + Correlation 0.41 0.34 0.15 0.50

Notes: Results are shown for all species and for habitat specialists within three groups (forest, grassland, shrubland).

bird richness compared to 39—41% of the variance
when combined with single and multiple texture mea-
sures (Table 3). However, the predictive power of EVI
was highly dependent on bird habitat specializations.
EVI was a strong predictor of shrub specialist richness,
accounting for 46% of the variance alone and up to
50% when combined with multiple textures (Table 3).
By contrast, texture measures alone (Table 2) were
stronger predictors of forest and grassland specialist
richness than EVI, and increased the variance
explained by EVI alone from 19% to 35% for forest
specialists, and from 0.03% to 17% for grassland spe-
cialists. When combined with EVI, homogeneity was
the individual texture measure that added the most
explanatory power to models of total bird richness
and richness of forest and grassland specialists. In
these models, homogeneity had a negative relationship
with overall richness and forest specialist richness, and
a positive relationship with grassland specialist rich-
ness. Texture measures added only 1-2% more
explanatory power to EVI-only models of shrubland
specialists (Table 3).

Predicted patterns of bird richness based on the best
EVI-texture model generally matched observed pat-
terns of bird richness for all species groups (Fig. 4),
and geographic locations of differences between pre-
dicted and observed richness were largely random
(Fig. 4). For total bird richness and forest specialists,
models under-predicted richness patterns along the
west coast and in the southern Rockies and northern
Midwest, and over-predicted richness in the middle
Rockies, the Appalachians, along the gulf coast, and in
Florida. For grassland specialists, the model under-pre-
dicted richness in the northern Great Plains and Mid-
west, and over-predicted richness in the middle
Rockies, Colorado High Plains, and parts of the arid
Southwest. For shrubland specialists, predictive models
tended to under-predict richness in the arid Southwest,
and over-predict richness in the Intermountain West,
eastern Washington, and Oregon.

Relative importance of texture

The top-ranked model also incorporating topographic
and land cover metrics explained 51% of the variance in
overall bird richness, and included five predictors and
their squared terms: EVI, proportion of forest cover, ter-
rain ruggedness, elevation, and the second-order texture
dissimilarity (Table 4). A significant positive relation-
ship between total bird richness and the squared term of
EVI indicated that richness increased exponentially with
productivity. A significant negative relationship of the
squared term of proportion of forest cover indicated that
richness peaked at intermediate levels of forest cover
(Table 4). Bird richness also showed a positive unimodal
relationship with elevation, terrain ruggedness, and dis-
similarity. Although dissimilarity had the smallest effect
size of the top five predictors, it had a significant posi-
tive effect and was more important for total bird rich-
ness than proportions of grassland and shrubland cover,
which were not included in the top-ranked model
(Fig. 5).

Hierarchical partitioning analysis, which measures the
relative importance of predictors by calculating their
independent and joint contributions toward variance
explained, also showed that EVI and proportion of for-
est cover had the strongest independent effects on pat-
terns of total bird richness (Fig. 6). However, the
independent effects of dissimilarity and its squared term
indicated that the texture measure uniquely explained
part of the variance in total bird richness that more com-
monly used heterogeneity metrics could not. The com-
bined independent contributions of dissimilarity and its
squared term were greater than those of either elevation
or terrain ruggedness. Joint contributions resulted from
multicollinearity among our predictors (Appendix S1:
Fig. S2), and reflect a degree of redundancy in variance
explained among even moderately correlated predictors
(Mac Nally 2000). For dissimilarity, relatively large joint
contributions were a result of collinearity with elevation
(r=-0.62), EVI (r=0.34), TRI (r=-0.24), and
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Fic. 4. Maps of observed (first column) vs. predicted (second column) bird species richness and difference from observed (third
column) for all species and for habitat specialists within three groups (forest, grassland, shrubland). The rightmost column of color
ramps reflects difference from observed (observed minus predicted richness), such that redder tones represent over-predictions and
bluer tones represent under-predictions. Richness is mapped for 2,749 Breeding Bird Survey (BBS) routes across the conterminous
United States. Predicted richness is based on the best model including EVI and image texture measure predictors for each species

group.

proportion of forest cover (r = 0.19), and indicate that
part of the variance explained by dissimilarity was
redundant with these other heterogeneity metrics.

For forest specialists, the top-ranked model explained
72% of the variance in richness (Table 4), and propor-
tion of forest cover was by far the most important pre-
dictor, followed by proportion of grassland cover and
topographic measures (Figs. 5, 6). Although dissimilar-
ity had a comparatively small positive effect on forest
specialists, the combined independent contributions of
dissimilarity and its squared term suggest the texture
measure was an important predictor and accounted for
variance that other metrics could not. EVI was not
included in the top-ranked model, indicating that for
forest specialists EVI had lower relative importance than
the other predictors evaluated. The top-ranked model
for grassland specialists explained 57% of the variance
(Table 4), with elevation and EVI having the strongest

effects on grassland specialist richness (Fig. 5). Dissimi-
larity had a relatively weak but significant negative effect
on grassland specialist richness, and had a comparable
independent contribution toward variance explained as
EVI (Fig. 6). For shrubland specialists, two models had
ABIC values within two of the top-ranked model and
both explained 60% of variance (Table 4; Raftery 1995).
Proportion of shrubland cover had the strongest positive
influence on shrubland bird richness, while dissimilarity
had a comparatively small but significant negative effect
on shrubland specialist richness (Fig. 5). Hierarchical
partitioning showed that dissimilarity independently
explained more variance in shrubland specialist richness
than other predictors, except proportion of shrubland
cover (Fig. 6).

Variance inflation factors (VIFs) for each predictor in
the top-ranked models for all species groups were <10
(mean VIF = 4.37; Appendix S1: Table S3), indicating
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Standardized effect sizes (regression coefficients) with 95% confidence intervals for predictor variables in top-ranked

models for all species combined and for habitat specialists within three groups (forest, grassland, shrubland). Note that not all pre-

dictor variables are included in top-ranked models for each group.

were highly dependent on the habitat specializations of
species. Texture measures were positively related with
richness of all breeding birds and forest specialists, but
were negatively related with richness of grassland and
shrubland specialists. This finding is consistent with
empirical studies (Tews et al. 2004, Cramer and Willig
2005, Veech and Crist 2007) and ecological models
(Kadmon and Allouche 2007, Yang et al. 2015), which
found in some cases an inverse relationship between
heterogeneity and species diversity. Effects of habitat
heterogeneity may vary among species groups depending
on whether habitat features are perceived as heterogene-
ity or fragmentation (Tews et al. 2004), and the spatial
and temporal scales at which animals perceive hetero-
geneity (Cramer and Willig 2005, Veech and Crist 2007).

Similarly, differences in the spatial resolution of vege-
tation patterns across habitat types may have influenced
the discrepancies we observed among species groups
(Bar-Massada et al. 2012). Medium-resolution imagery
may be too coarse to capture fine-grain aspects of
heterogeneity, particularly in comparatively homoge-
nous grassland and shrubland habitats (Hudak and

Wessman 1998, Wachendorf et al. 2018). Still, 20-m res-
olution image textures have been used to effectively
detect heterogeneity among various management treat-
ments in tallgrass prairies (Briggs and Nellis 1991), and
15-m resolution textures captured spatial variation in
vertical structure of mixed grasslands under different
grazing regimes (Guo et al. 2004). These studies suggest
that medium-resolution image textures can effectively
detect vegetation heterogeneity that is important for
birds in seemingly homogeneous habitats. Moreover, 30-
m resolution textures combined with NDVI explained
up to 78% of the variance in group size of Greater Rheas
(Rhea Americana) in pampas grasslands of Argentina
(Bellis et al. 2008). Similarly, 30-m resolution textures
alone explained up to 82% of the variance in shrubland/
grassland bird richness in semi-arid landscapes in the
Chihuahuan desert (St-Louis et al. 2009), outperforming
1-m resolution texture measures from the same study
area (St-Louis et al. 2006). This suggests that a 30-m
pixel size, though it cannot detect fine-resolution fea-
tures (e.g., individual plants), may be a more appropriate
resolution for measuring the spatial variability and
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arrangement of bird habitats across broad spatial
extents.

It is important to note, however, that St-Louis et al.
(2009) found strong positive relationships between med-
ium-resolution textures and shrubland and grassland
bird richness, whereas we found a negative relationship.
However, we focused only on habitat specialists that may
prefer more homogenous, uninterrupted areas of habi-
tat, while St-Louis et al. (2009) also included habitat
generalists that may be more tolerant of, or even
attracted to, heterogeneous habitats. Additionally, both
the Chihuahuan desert and Greater Rhea studies were
conducted exclusively within shrubland and grassland
habitats, and the heterogeneity—diversity relationship
may vary depending on whether analyses are conducted
within or across habitat types (Bar-Massada and Wood
2014). Analyses limited to a single habitat type may be
more sensitive to subtle variations within that limited
heterogeneity gradient, and these subtleties may have

been lost in the wide gradient of heterogeneity values we
evaluated across habitats and at a near-continental scale.
Thus, the negative relationship we observed between tex-
ture measures and grassland and shrubland specialist
richness was likely influenced by the relative homogene-
ity of these habitats compared with the structurally com-
plex forests and human-modified landscapes also
evaluated.

When combined with EVI, texture measures improved
the overall performance of bird richness models com-
pared to those based on EVI alone, emphasizing the
importance of both habitat heterogeneity and available
energy as complementary but distinct drivers of biodi-
versity (Hurlbert and Haskell 2003, Davies et al. 2007).
By itself, EVI explained more variance in total bird rich-
ness and shrubland specialist richness than texture-only
models, while the opposite was true for grassland spe-
cialists. This suggests that contrasting mechanisms
might drive richness patterns in different habitat types.
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The addition of multiple texture measures to EVI mod-
els explained only slightly more variance than EVI mod-
els including only one texture, suggesting that inclusion
of multiple texture measures may not help to improve
the predictive power of biodiversity models.

When we evaluated our strongest individual texture
measure in our global model including productivity,
topographic, and land cover metrics, we found that the
dissimilarity texture had relatively low influence on total
bird richness compared to EVI and proportion of forest
cover. However, dissimilarity texture still had a signifi-
cant positive relationship with total bird richness, and
contributed more independent explanatory power than
topographic metrics. For forest specialists, dissimilarity
had a significant positive effect and contributed predic-
tive power, while EVI was not even included in the top-
ranked model. This suggests that within forest habitats,
vegetation heterogeneity was more important for forest
specialists than available energy. It has been suggested
that environmental heterogeneity generally has a stron-
ger effect in regions with higher available energy, where
energy may be less limiting for biodiversity (Kerr and
Packer 1997, Kreft and Jetz 2007), and that structurally
complex habitats support higher species richness com-
pared to structurally simple habitats (Hurlbert 2004,
Tews et al. 2004). Our findings for forest specialists are
consistent with both of these hypotheses. Our results
also indicate that texture measures capture aspects of
heterogeneity undetected by other measures, and that
they enhance or complement more commonly used mea-
sures of environmental heterogeneity. Thus, we suggest
that texture measures are best considered in biodiversity
studies in conjunction with productivity or land cover
metrics.

Conservation and management implications

As humans rapidly transform the Earth’s terrestrial
ecosystems, there is an urgent need for innovative, adap-
tive approaches to identify areas with high potential for
supporting biodiversity (Heller and Zavaleta 2009, Jetz
et al. 2019). Texture measures derived from freely avail-
able satellite data, and processed on cloud-computing
platforms, have the potential to provide broad-scale,
cost-effective, and readily updatable measures of habitat
heterogeneity. We show here that medium-resolution tex-
ture measures capture key landscape patterns that influ-
ence species richness across broad spatial extents.

Furthermore, while improving our understanding of
landscape features that currently support large numbers
of species is a conservation priority, there is also a need
to identify landscapes that may be resilient to future glo-
bal change (Bengtsson et al. 2003, Lawler et al. 2015). A
number of studies have suggested that spatially diverse
and heterogeneous environments are more resilient to
environmental stress, because structurally complex sys-
tems are able to absorb disturbance without loss of eco-
logical functions and processes (Holling 1973), and
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provide a variety of microsite conditions that may func-
tion as refugia (Virah-Sawmy et al. 2009, Keppel et al.
2012, Elsen et al. 2020). Thus, spatially heterogeneous
environments may play an important role in conserving
species diversity over time by mediating the effects of
environmental stress and perturbations on individuals
and communities (Keppel et al. 2012, Oliver et al. 2015).
Additionally, structurally complex habitats generally
increase niche space by providing a greater diversity of
resources and ways for organisms to exploit those
resources (Tews et al. 2004, Stein et al. 2014). Our results
demonstrate that landscapes with higher spatial hetero-
geneity in productivity can support a greater number of
total species, and that this is a factor to consider when
prioritizing areas for protection. However, such coarse-
filter strategies to conserve heterogeneous landscapes
should be complementary to, and not a replacement for,
fine-filter efforts to mitigate specific threats to declining,
area-sensitive habitat specialists (Schwartz 1999, Rodri-
gues et al. 2004, Tingley et al. 2014).

CONCLUSION

We demonstrate that texture measures derived from
30-m resolution satellite imagery effectively predict
broad-scale patterns of bird species richness, and high-
light their potential for capturing environmental hetero-
geneity not detected by more conventional heterogeneity
metrics. Although we found positive correlations
between texture measures and total bird richness and
forest specialists, this relationship was frequently uni-
modal, and for shrubland and grassland specialists the
relationship was consistently negative. Our results reflect
the complexity of the heterogeneity-diversity relation-
ship, and highlight the need for further investigation of
these relationships at different spatial scales, and within-
vs. across-habitat contexts. We suggest that texture mea-
sures show promise as a tool for biodiversity modeling,
particularly when used in combination with other pre-
dictor variables such as productivity and land cover.
Ultimately, Landsat-derived texture measures present
exciting opportunities and challenges for mapping spe-
cies diversity at macroecological scales, and provide
direct, continuous, and cost-effective metrics for broad-
scale ecological and conservation applications. The 30-m
resolution texture measures we developed for the conter-
minous United States are available online.”
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