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A B S T R A C T   

Addressing global declines in biodiversity requires accurate assessments of key environmental attributes deter
mining patterns of species diversity. Spatial heterogeneity of vegetation strongly affects species diversity pat
terns, and measures of vegetation structure derived from lidar and satellite image texture analysis correlate well 
with species richness. Our goal here was to gain a better understanding of why image texture explains bird 
richness, by linking field-based measures of vegetation structure directly with both image texture and bird 
richness. In addition, we asked how image texture compares with lidar-based canopy height variability, and how 
sensor resolution affects the explanatory power of image texture. We generated texture metrics from 30 m 
(Landsat 8) and 10 m (Sentinel-2) resolution Enhanced Vegetation Index (EVI) imagery from 2017 to 2019. We 
compared textures with vegetation metrics and bird richness data from 27 National Ecological Observatory 
Network (NEON) terrestrial field sites across the continental US. Both 30 and 10 m resolution texture metrics 
were strongly correlated with lidar-based canopy height variability (|r| = 0.64 and 0.80, respectively). Texture 
was moderately correlated with field-based metrics, including variability of vegetation height and tree stem 
diameter, and foliage height diversity (range |r| = 0.31–0.52). Generally, 10 m resolution texture had stronger 
correlations with lidar and field-based metrics than 30 m resolution texture. In univariate linear models of total 
bird richness, 10 m resolution texture metrics also had higher explanatory power (up to R2

adj = 0.45), than 30 m 
texture metrics (up to R2

adj = 0.31). Among all metrics evaluated, the 10 m homogeneity texture was the best 
univariate predictor of total bird richness. In multivariate bird richness models that combined texture with lidar- 
based canopy height variability and field-based metrics, both 30 m and 10 m resolution texture metrics were 
selected in top-ranked models and independently contributed explanatory power (up to R2

adj = 46%). Lidar- 
based canopy height variability was also selected in a top-ranked model of total bird richness, but indepen
dently contributed only 15% of the variance explained. Our results show satellite image texture characterized 
multiple features of structural and compositional vegetation heterogeneity, complemented more commonly used 
metrics in models of bird richness and for some guilds outperformed both lidar-based canopy height variability 
and field-based vegetation measurements. Ours is the first study to directly link image texture both to specific 
components of vegetation heterogeneity and to bird richness across multiple ecoregions and spatial resolutions, 
thereby shedding light on habitat features underlying the strong correlation between image texture and 
biodiversity.   

1. Introduction 

The Earth’s ecosystems are undergoing rapid changes and unprece
dented declines in biological diversity (Cardinale et al., 2012). There is a 

pressing need for accessible and reliable measures of key environmental 
determinants of biodiversity to help guide and monitor conservation 
strategies (Pettorelli et al., 2016; Jetz et al., 2019). Environmental het
erogeneity is a powerful predictor of biodiversity patterns (Stein et al., 
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2014), and spatial heterogeneity of vegetation has a particularly strong 
influence on species distributions and diversity (MacArthur and Mac
Arthur, 1961; Tews et al., 2004). Vegetation heterogeneity affects 
biodiversity patterns by influencing resource use and selection (Cody, 
1968; Patthey et al., 2012), species interactions (Loarie et al., 2013; 
Seibold et al., 2013) and movement patterns (Frair et al., 2005; Jirinec 
et al., 2016). Spatial heterogeneity of vegetation can also increase 
microenvironmental conditions that serve as refugia from climatic ex
tremes (Virah-Sawmy et al., 2009; Melin et al., 2014). 

Both the structural and the compositional heterogeneity of vegeta
tion increase species diversity at a range of spatial scales by increasing 
the variety of available resources and diversity of ways animals can 
exploit those resources (Benton et al., 2003; Schuldt et al., 2019). 
Vegetation structure refers to the three-dimensional configuration of 
plants, such as plant height, density, and distribution of vertical layers, 
while vegetation composition describes the identity and variety of plant 
species or major lifeforms (Noss, 1990). The structure of vegetation, its 
physical complexity and arrangement, are important drivers of species 
diversity (MacArthur and MacArthur, 1961; McCoy and Bell, 1991). 
However, the floristic composition and diversity of plants also influences 
animal distributions and interactions (Zhao et al., 2006; Castagneyrol 
and Jactel, 2012). Vegetation heterogeneity thus plays a complex and 
important role in determining patterns of biodiversity. 

Vegetation heterogeneity is difficult to quantify and measuring it 
across broad areas is a challenge which entails trade-offs among 
different methods. Field-based methods quantify plant structural and 
compositional heterogeneity directly but have limited coverage in time 
and space (Rocchini et al., 2010). Lidar imaging is a fine-resolution 
alternative for estimating vegetation structure but is costly to obtain, 
has limited spatial and temporal coverage (Simonson et al., 2014), often 
excludes lower vegetation layers, and provides little information on 
composition. Satellite-based remote sensing data typically only measure 
proxies of structural and compositional heterogeneity, but provide 
continuous measures for large areas (Rocchini et al., 2016) and can 
quantify and map vegetation characteristics that are important for 
biodiversity (Pettorelli et al., 2016; Wang and Gamon, 2019). These 
different types of vegetation data thus have different strengths and 
drawbacks and are most powerful and informative when used in com
bination (Rhodes et al., 2015; Rocchini et al., 2016). 

Satellite image texture analysis is an approach that shows particular 
promise for characterizing aspects of habitat structure and composition 
over broad extents (Bellis et al., 2008; Farwell et al., 2020). Image 
texture quantifies spectral and spatial variations in pixel values of an 
image, and thus conveys information about the spectral and spatial 
heterogeneity of image features (Haralick et al., 1973). Texture metrics 
based on productivity measures, including the normalized difference 
and enhanced vegetation indices (NDVI, EVI), provide important in
formation about spatial patterns in vegetation structure and composi
tion (St-Louis et al., 2009; Campos et al., 2018). Indeed, texture analyses 
of satellite images at varying resolutions have been used to effectively 
characterize patterns of both structural and compositional vegetation 
heterogeneity across a range of habitat types, such as successional stages 
in coniferous forests (30 m; Jakubauskas, 1997), stand structure metrics 
in coniferous plantations (1–3 m; Kayitakire et al., 2006; Ozdemir and 
Karnieli, 2011), foliage height diversity in a grassland-savanna- 
woodland mosaic (30 m; Wood et al., 2012), and heterogeneity in 
plant species composition and structure in dry woodlands (30 m; Cam
pos et al., 2018) and grasslands (15–20 m; Briggs and Nellis, 1991; Guo 
et al., 2004). 

Satellite image texture is also a powerful predictor of biodiversity 
within different habitats, including forests (Culbert et al., 2012; Wallis 
et al., 2016), grasslands (Bellis et al., 2008; Culbert et al., 2012), arid 
shrublands (St-Louis et al., 2009), and savanna-woodland mosaics 
(Wood et al., 2013). Additionally, EVI-based textures based on Landsat 
(30 m; Farwell et al., 2020) and MODIS (250 m; Tuanmu and Jetz, 2015) 
effectively model broad-scale bird richness patterns across the 

conterminous US. Despite strong correlations between image texture 
and species richness, however, the underlying habitat features deter
mining these relationships remain unclear (St-Louis et al., 2009; Farwell 
et al., 2020). While image texture has been linked with particular fea
tures of vegetation heterogeneity (e.g., Ozdemir and Karnieli, 2011; 
Wood et al., 2012), or with patterns of bird richness (see above), no prior 
study has connected texture directly with both vegetation characteristics 
and bird richness data across multiple habitat types and ecoregions. 
Furthermore, there is a need to identify the spatial resolution of image 
texture that best characterizes patterns of vegetation heterogeneity 
relevant for biodiversity (Bar-Massada et al., 2012). 

Here, our primary goal was to address these knowledge gaps by (1) 
identifying which features of vegetation heterogeneity are best captured 
by image texture across a variety of habitats, ecoregions, and spatial 
resolutions, and (2) comparing the performance of texture with lidar- 
based canopy height variability and field-based vegetation metrics in 
models of bird richness.  

- Our first objective was to calculate a suite of image texture metrics 
based on 30 m (Landsat 8) and 10 m (Sentinel-2) resolution EVI 
imagery, as well as vegetation metrics from lidar canopy height 
models and field-based sampling.  

- Second, we evaluated correlations between satellite-based texture 
metrics and more commonly used lidar- and field-based measures of 
vegetation heterogeneity. We predicted that image texture would 
have a positive relationship with both vegetation structural and 
compositional heterogeneity.  

- Third, we compared the performance of texture, lidar-based canopy 
height variability, and field-based measures of vegetation heteroge
neity in models of bird richness. We predicted that satellite-based 
texture would have higher explanatory power than field-based 
metrics but comparable explanatory power to lidar-based canopy 
height variability, because image texture and lidar provide contin
uous habitat measures while field-based metrics have limited spatial 
coverage.  

- Finally, we evaluated the relative importance of image texture in 
multivariate models of bird richness that also included lidar-based 
canopy height variability and field-based metrics. We predicted 
that image texture would complement more common metrics of 
vegetation heterogeneity and contribute independent explanatory 
power in models of bird richness. 

2. Methods 

2.1. Study area 

As our study area, we selected 27 of the 44 terrestrial field sites in the 
National Ecological Observatory Network (NEON) distributed across 16 
ecoclimatic domains in the continental US (Barnett et al., 2019a; Fig. 1a; 
Table S1). NEON partitioned the continent into these domains using 
multivariate geographical clustering analysis of nine ecoclimatic vari
ables that influence large-scale patterns of vegetation (Thorpe et al., 
2016). NEON sites represent the dominant vegetation type within each 
ecoclimatic domain (Barnett et al., 2019a). We selected sites dominated 
by forest, grassland, and shrubland habitats (Fig. 2) because these 
represent broad-scale vegetation associations for breeding birds in the 
US. Given our main objectives, we only considered sites that provided 
bird, vegetation, and lidar datasets for the same locations. We used 
NEON bird sampling plots (750 × 750 m) as our primary unit of analysis, 
and thus excluded sites too small (n = 12) to accommodate full plots 
(Thorpe et al., 2016). Among the 27 remaining terrestrial sites, we 
evaluated a total of 223 sampling plots dominated either by forest (n =
110), grassland (n = 53) or shrubland cover (n = 52). 
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2.2. Remote sensing data 

2.2.1. Satellite image texture 
We calculated image texture metrics from an Enhanced Vegetation 

Index (EVI) composite for the continental US, derived from Landsat 8 
Operational Land Imager atmospherically corrected Surface Reflectance 
Tier 1 data, and Sentinel-2 Multispectral Instrument Level 2A Bottom of 
Atmosphere reflectance data. We accessed and processed all satellite 
images in Google Earth Engine (GEE; Gorelick et al., 2017). We excluded 
pixels containing water, clouds, or cloud shadows using product quality 
assessment bands, and those mapped as permanent water bodies based 
on Landsat imagery (Hansen et al., 2013). We calculated EVI from the 
near-infrared, red, and blue bands of each image, and chose EVI rather 
than NDVI because it is less likely to saturate over high biomass and less 
sensitive to atmospheric conditions and soil brightness (Huete et al., 
2002). We used imagery from 2017 to 2019 to match the available 
NEON bird data, and calculated the median EVI value for each pixel 
from all available images between March–August as a measure of 
vegetation greenness during the growing season (Creech et al., 2016). 
Because negative values were rare in our median EVI composite and 
generally indicated a lack of vegetation (e.g., rock, bare ground), we set 
negative values to zero and linearly rescaled EVI values to unsigned 8-bit 
integers ranging from 1 to 100 for the entire continental US prior to 
summarizing data for each NEON sampling plot. 

In image texture analysis, a texture value is calculated from the 
spectral values (or ‘gray-levels’) of all the pixels within a given unit of 
analysis (Hall-Beyer, 2017). First-order texture metrics are statistical 
summaries (e.g., mean, variance) of pixel gray-levels within that pro
cessing extent, while second-order texture metrics are derived from the 
gray-level co-occurrence matrix (Haralick et al., 1973). The co- 
occurrence matrix contains the normalized frequencies with which 
adjacent pixel gray-levels co-occur within the unit of analysis, and thus 
reflect spatial patterns and relationships among neighboring pixels 
(Hall-Beyer, 2017). We calculated first-order standard deviation and 13 
second-order texture metrics, using the glcmTexture function in GEE 
(Haralick et al., 1973, Conners et al., 1984; see Table 1 for list of 14 
textures calculated). Our unit of analysis was each NEON bird survey 

plot (Fig. 1c); plot-level texture metrics were calculated using all the 
pixels within each 750 × 750 m (56.25 ha) plot, i.e., 25 × 25 Landsat 8 
(30 m) pixels, or 75 × 75 Sentinel-2 (10 m) pixels. We analyzed texture 
only at this extent because texture metrics calculated across varying 
spatial extents are typically highly correlated and show consistent re
lationships with patterns of species diversity (St-Louis et al., 2006; Wood 
et al., 2013). We calculated pairwise Spearman’s correlation coefficients 
among texture metrics to check for collinearity because some texture 
metrics are known to be highly correlated (Baraldi and Parmiggiani, 
1995). 

Texture metrics provide information about within-class habitat het
erogeneity that categorical land cover classifications cannot capture and 
contribute additional explanatory power when combined with land 
cover metrics in models of bird richness (Culbert et al., 2012; Tuanmu 
and Jetz, 2015; Farwell et al., 2020). However, we did not include 
remotely sensed, classified land cover metrics in our analyses because 
NEON sites are intentionally located in large areas of contiguous land 
cover (e.g., entire sites where sampling plots are forested, or in grass
lands), and thus are ill-suited for analyses of landscape pattern measures 
such as patch metrics or categorical land cover diversity. 

2.2.2. Lidar canopy height model 
We analyzed lidar-derived canopy height models (CHM) from 

NEON’s ecosystem structure dataset to characterize vertical canopy 
structure and heterogeneity (National Ecological Observatory Network, 
2020). NEON produces CHMs at a 1 m spatial resolution, with a mini
mum height of 2 m (Fig. 2c; see NEON.DOC.002837vA for technical 
details of lidar-derived CHMs). We used lidar data from the year cor
responding with the most recent field-based vegetation data 
(2017–2019). We used zonal statistics in ArcGIS v. 10.5.1 (Environ
mental Research Systems Institute, 2016) to calculate three relatively 
straightforward metrics to derive from existing canopy height models: 
the mean, maximum, and standard deviation (SD) of canopy height. We 
calculated these CHM metrics within each 750 × 750 m (56.25 ha) 
NEON bird sampling plot, also matching the sampling extent of satellite 
image textures. Because all three CHM metrics were highly correlated (| 
r| = 0.91–0.92), we only included SD of canopy height as a 

Fig. 1. NEON ecoclimatic domains and terrestrial site locations (a; see Table S1 for full list of domains and sites), with insets showing sampling schematics for 
vegetation surveys (b) and breeding landbird surveys (c). 
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representative measure of lidar-based canopy height variability, in 
subsequent analyses. The minimum height of 2 m for CHMs resulted in 
limited variability of canopy height data in grasslands, and to a lesser 
extent in shrublands. Thus, analyses of metrics derived from lidar can
opy height in these habitats should be interpreted with caution. 

2.2.3. Field-based vegetation metrics 
To derive field-based vegetation metrics, we analyzed NEON woody 

plant vegetation structure (WPVS) and plant presence and percent cover 
(PPPC) datasets (National Ecological Observatory Network, 2020). 
WPVS data (e.g., height, stem diameter) are collected for all trees and 
shrubs within 20 × 20 m plots, which are distributed across each site 
using a stratified random approach (Thorpe et al., 2016; Fig. 1b). PPPC 
data are collected in 6–8 smaller plots (1 m2) nested within the larger 
WPVS plots (Barnett et al., 2019b; Fig. 1b). We only included vegetation 
plots co-located with bird sampling plots in our analyses (n = 223); sites 
contained a range of 1–13 co-located sampling plots (mean = 8.3). 
NEON uses standardized vegetation sampling protocols across all 
terrestrial sites. However, WPVS data is only collected if at least one tree 
with a stem diameter ≥ 10 cm is present, or if woody plants constitute 
≥10% cover of the plot. Thus, WPVS data are not available for all 
sampling plots, and resulted in limited vegetation structure data for 
habitats dominated by grass and herbaceous vegetation. 

We derived a suite of field-based vegetation metrics from WPVS and 
PPPC data. We calculated SD of woody vegetation height for each plot, 

as a field-based measure of variability in vertical vegetation structure. 
We categorized height data for shrubs and trees into four height bins 
representing different woody vegetation layers (Lopatin et al., 2015): 
low canopy (0–2 m), middle-low canopy (2–8 m), middle-high canopy 
(8–16 m), and high canopy (> 16 m). To characterize foliage height 
diversity, or the distribution of woody vegetation among these vertical 
layers, we calculated the Shannon diversity index (SDI) because it ac
counts for both the abundance and evenness of vegetation layers, and is 
a commonly used and standard metric for quantifying environmental 
variability (e.g., MacArthur and MacArthur, 1961; Ozdemir et al., 
2018). For trees with a stem diameter > 10 cm, we calculated basal area 
and SD of tree stem diameter as measures of tree volume/density and 
variability in tree size, respectively. Based on the North American plant 
species dataset developed by Engemann et al. (2016), we classified plant 
species into six lifeforms, and converted PPPC data for individual species 
to percent cover for each major lifeform: herbaceous broadleaf plants, 
grasses, vines, non-woody epiphytes, shrubs, and trees. In subsequent 
analyses, we focus on percent cover of herbaceous broadleaf plants, 
grasses, shrubs and trees as major plant lifeforms important for birds 
within our three habitat guilds (forest, grassland, shrubland). Using 
these major lifeform percent cover values, we also calculated SDI of 
plant cover types, as a measure of vegetation compositional 
heterogeneity. 

Fig. 2. Data layers (columns a–e) corresponding to three sampled landscapes (rows 1–3), representing forest, grassland, and shrubland habitats: (1) mixed evergreen- 
deciduous forest in the northeastern US (42◦25′47′′ N, 72◦14′23′′ W); (2) shortgrass prairie in the Central Plains of Colorado (40◦51′8′′ N, 104◦44′35′′ W); and (3) 
shrubland in the Moab Desert, in southwestern US (38◦15′19′′ N, 109◦22′31′′ W). Columns: (a) ground photo; (b) true color satellite image (Maxar <0.5 m imagery); 
(c) lidar-derived canopy height model; (d) 30 m homogeneity texture (Landsat 8); and (e) 10 m resolution homogeneity texture (Sentinel-2). Low homogeneity values 
(yellow) indicate high spatial heterogeneity of vegetation, while high homogeneity values (purple) indicate low heterogeneity. Squares represent 750 × 750 m field 
sampling plots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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2.3. Landbird data 

We analyzed the NEON breeding landbird point count dataset (Na
tional Ecological Observatory Network, 2020) to calculate bird species 
richness. We limited our bird richness analyses to data collected during 

2017–2019, because many NEON terrestrial sites did not have bird 
survey data prior to 2017. Of the 27 terrestrial sites included in our 
analyses, 25 had three years and 2 had two years of bird survey data. 
Sampling methods vary between large and small sites within the NEON 
network. Larger sites use bird survey plots containing 9-point sampling 
grids (Fig. 1c; hereafter, ‘bird plots’), randomly distributed across sites 
proportionally to the percent cover of National Land Cover Database 
classes (NLCD; Homer et al., 2020) with the restriction that >50% of 
sampling points must fall within one dominant NLCD class (Barnett 
et al., 2019a). Conversely, smaller sites use single, randomly distributed 
sampling points. Again, we excluded sites too small to contain the larger 
sampling grids (n = 12) to minimize discrepancies in bird richness 
resulting from sampling differences. 

Following the NEON bird sampling protocol, trained observers wait 
2 min after arriving at each point, and then conduct a 6-min count 
during which every bird seen or heard is recorded (Hanni et al., 2016). 
Each point is surveyed once per year within a 2–3 week sampling period 
during peak breeding season dates informed by local experts, during 
site-specific times of day when birds are most likely to sing and when 
weather conditions are favorable (Ralph et al., 1993; Hanni et al., 2016). 
We excluded far-ranging species (e.g., raptors), and species poorly 
sampled by diurnal point count surveys (e.g., nocturnal species). We also 
excluded observations >125 m from the observer, to minimize counting 
individual birds at more than one point (sampling points within NEON 
bird plots are spaced 250 m apart; Ralph et al., 1993). To calculate plot- 
level bird richness, we counted the cumulative number of species 
recorded across all nine sampling points for each plot, and across years 
(2017–2019) to limit effects of interannual differences in timing and 
survey conditions. We evaluated data from 223 sampling plots with a 
total of 58,803 observations of 329 species (Table S2). In addition to 
calculating total species richness, we calculated richness of specialists 
within three major habitat types: forest, grassland, and shrubland 
(Table S2). Specialists are birds strongly affiliated with a single breeding 
habitat type (International Union for Conservation of Nature and Nat
ural Resources, 2020; Billerman et al., 2020), and of the 329 species 
evaluated, included 75 forest, 14 grassland, and 27 shrubland 
specialists. 

2.4. Statistical analysis 

We first applied correlation analysis to identify basic relationships 
among our different vegetation metrics. Second, we explored their re
lationships with bird richness in univariate models. Third, based on 
these preliminary analyses, we selected a set of representative predictors 
to test in multivariate models of bird richness and evaluated their 
relative importance. 

To investigate which features of vegetation heterogeneity are well- 
captured by image texture, first we evaluated the relationship between 
30 and 10 m texture metrics, lidar canopy height variability, and field- 
based metrics using Spearman’s correlation coefficients. We then tested 
each set of environmental variables in univariate models of bird richness 
after centering and standardizing predictors. We parameterized linear 
regression models to relate environmental predictors to richness of all 
species and of forest and grassland specialists, because our data were 
normally distributed (results not shown). The exception was shrubland 
specialist richness which conformed more closely to a Poisson distri
bution, but we found that top-ranked predictors in Poisson generalized 
linear model outputs for this bird group were consistent with those of 
linear models (Table S3). Thus, to allow for comparisons across bird 
groups we applied linear regressions for all bird groups evaluated. In our 
analyses of habitat specialists, we restricted our analyses to sampled 
plots dominated by the preferred habitat type (i.e., forest, grassland, 
shrubland) to focus on vegetation metrics that are important for each 
habitat group, and determined land cover dominance based on percent 
cover of NLCD classes. 

Lastly, we fitted multivariate models of bird richness that included 

Table 1 
Image texture measures selected for analysis, with formulae (Haralick et al., 
1973; Conners et al., 1984).  

Texture metric Description Formulaa 

First order: 
Standard 
deviation  

Dispersion of pixel 
values. 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

|x − x|2

N

√

Second order:   
Contrast 

(also “Sum of 
squares 
variance”, or 
“Inertia”) 

Exponentially weighted 
difference in adjacent 
pixels. High values 
indicate local regions of 
high contrast. 

∑N− 1
i,j=0 p(i, j) (i − j)2  

Dissimilarity Linear difference in 
values of adjacent pixels. 

∑N− 1
i,j=0p(i, j) ∣i − j∣  

Homogeneity 
(also “Inverse 
difference 
moment”) 

Similarity of values 
between adjacent pixels; 
smoothness of an image. 
Low values indicate 
greater heterogeneity. 

∑N− 1
i,j=0

p(i, j)
1 + (i − j)2  

Uniformity 
(also “Angular 
second 
moment”, or 
“Energy”) 

Orderliness in spatial 
distribution of pixel 
values. 

∑N− 1
i,j=0 (p(i, j) )2  

Entropy Disorderliness (or 
‘randomness’) in spatial 
distribution of pixel 
values. 

−
∑N− 1

i,j=0 p(i, j) log (p(i, j) )

Sum entropy Disorder related to the 
gray-level sum 
distribution of an image. 

−
∑2N

i=2 px+y(i)log
{

px+y(i)
}

Difference 
entropy 

Disorder related to the 
gray-level difference 
distribution of the image. 

−
∑N− 1

i=0 px− y(i)log
{

px− y(i)
}

Difference 
variance 

Places higher weights on 
adjacent pixels with 
differing intensity levels 
that deviate more from 
the mean. 

variance of px− y 

Correlation Linear dependency of 
neighboring pixel values 
(0 = uncorrelated, |1| =
perfectly correlated). 

∑N− 1
i,j=0(ij)p(i, j) − μxμy

σxσy  

Information 
measure of 
correlation 1b 

Information gain 
(reduction in 
uncertainty) based on 
nonlinear dependency of 
neighboring pixel values. 

HXY − HXY1
max{HX,HY}

Information 
measure of 
correlation 2b 

Correlation coefficient 
related to mutual 
information of 
neighboring pixel values. 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − exp[ − 2.0(HXY2 − HXY) ])

√

Cluster shade Skewness of the GLCM. 
High values indicate 
asymmetry. 

∑N− 1
i,j=0 p(i, j)

(
i + j − μx − μy

)3  

Cluster 
prominence 

Also a measure of 
asymmetry. Low values 
indicate GLCM 
distribution peaks around 
the mean. 

∑N− 1
i,j=0 p(i, j)

(
i + j − μx − μy

)4   

a Where N is the number of image gray levels; i indicates the gray-level co- 
occurrence matrix (GLCM) row, and j is the column; p(i, j) is the (i, j)th entry in 
the normalized GLCM, or the probability that two gray levels i and j will be 
adjacent; px(i) is the ith entry in the marginal-probability matrix; py(j) =
∑N

i=1 p(i, j); μx, μy, and σx, σy, are the means and standard deviations of GLCM 
row and column sums, respectively. 

b HXY = −
∑N− 1

i,j=0 p(i, j) log(p(i, j) ) where HX, HY are entropies of px, py; HXY1 

= −
∑N− 1

i,j=0 p(i, j)log
{

px(i)py(j)
}
; HXY2 = −

∑N− 1
i,j=0px(i)py(j) log

{
px(i)py(j)

}
. 
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six predictors with highest explanatory power from each category of 
variables evaluated in univariate models (see Results, Section 3.3). Our 
objective for the multivariate models was not to develop models with the 
highest possible predictive power, but rather to compare the relative 
performance of texture metrics with a set of representative, more 
commonly used metrics of vegetation heterogeneity. We generated 
linear models with all possible subsets of six predictors and an intercept, 
and fitted models with 30 and 10 m resolution texture metrics, sepa
rately. This resulted in a total of 128 models for each group of birds 
evaluated: all species, forest specialists, grassland specialists, and 
shrubland specialists (512 models total). We selected top models based 
on the Bayesian Information Criterion (BIC), which penalizes over- 
parameterized models to avoid overfitting (Brewer et al., 2016) but 
can sometimes result in oversimplified models (Burnham and Anderson, 
2004). We checked for correlations among predictors before running 
multivariate models (Figs. S2, S3), and calculated variance inflation 
factors (VIFs) for each predictor in top-ranked models as a secondary 
check for multicollinearity, using a threshold of VIF > 4 to remove 
variables due to multicollinearity (Booth et al., 1994). Model selection 
approaches can only measure the relative quality of models, thus we also 
calculated adjusted coefficients of determination (R2

adj) to determine 
how much of the variance in bird richness was explained by top-ranking 
models (Guthery et al., 2005). We assessed the relative influence of 
predictors on bird richness by comparing standardized regression co
efficients as measures of effect size, and conducted hierarchical parti
tioning analysis on top-ranked models, to calculate the independent and 

joint contribution of each predictor towards total explained variance 
(Chevan and Sutherland, 1991). The independent contribution of each 
predictor represents variance that is uniquely explained by that pre
dictor, whereas joint contributions cannot be distinguished from other 
predictors due to multicollinearity (Mac Nally, 2000). 

To check for spatial autocorrelation of NEON sampling locations, we 
fitted non-parametric covariance functions and analyzed model re
siduals in spline correlograms with bootstrap confidence envelopes, 
using 1000 permutations and a 95% confidence level as our threshold 
(Bjornstad and Falck, 2001). Data exploration and statistical analyses 
were conducted in R version 3.6.1 (R Core Team, 2020). We used the 
package “MuMIn” for multivariate models and BIC model selection 
(Barton, 2019), “car” to calculate VIFs (Fox and Weisberg, 2019), “hier. 
part” for hierarchical partitioning analysis (Walsh and Mac Nally, 2013), 
and “ncf” for spline correlograms (Bjornstad, 2020; see Table S4 for 
descriptions of R packages and functions used). 

3. Results 

3.1. Vegetation heterogeneity captured by texture 

We found positive relationships between texture metrics calculated 
from EVI composites and multiple lidar- and field-based measures of 
vegetation structural and compositional heterogeneity (Table 2). Both 
30 m (Landsat 8) and 10 m (Sentinel-2) texture metrics showed the 
strongest relationships with lidar-based canopy height variability (|r| =

Table 2 
Correlations between image textures vs. lidar- and field-based heterogeneity metrics, including standard deviation (SD) of lidar-based canopy height and nine field- 
based metrics: SD field-based vegetation height, Shannon diversity index (SDI) of foliage height, SD tree stem diameter, total basal area, cover SDI, and proportions of 
grass, herbaceous, shrub, and tree cover. Strongest correlations between lidar- and field-based metrics and textures at both 30 and 10 m resolutions, shown in bold. 
Note that two second-order textures, homogeneity and uniformity, quantify image homogeneity, thus a negative relationship between vegetation metrics and these 
textures represents a positive relationship with spatial heterogeneity of vegetation.   

SD Lidar canopy 
ht. 

SD Field veg. 
ht. 

Foliage ht. 
SDI 

Basal 
area 

SD Stem 
diam. 

Cover 
SDI 

% Grass 
cover 

% Herb. 
cover 

% Shrub 
cover 

% Tree 
cover 

30 m textures (Landsat 8):          
Std Dev 0.53 0.24 0.21 0.04 0.20 0.15 0.04 0.07 − 0.01 0.05 
Variance 0.53 0.15 0.15 0.04 0.15 0.06 0.02 0.02 0.03 0.05 
Contrast 0.50 0.20 0.20 0.02 0.21 0.15 0.00 0.02 − 0.04 0.13 
Dissimilarity 0.53 0.31 0.25 0.03 0.25 0.20 0.06 0.08 − 0.05 0.13 
Homogeneity ¡0.64 ¡0.44 ¡0.31 − 0.07 ¡0.34 ¡0.25 ¡0.11 − 0.16 0.09 − 0.07 
Entropy 0.61 0.41 0.29 0.07 0.30 0.24 0.10 0.15 − 0.06 0.07 
Uniformity ¡0.64 − 0.42 − 0.30 ¡0.08 − 0.31 − 0.22 − 0.06 ¡0.17 0.04 − 0.07 
Sum variance 0.53 0.14 0.15 0.04 0.14 0.05 0.02 0.02 0.04 0.05 
Sum entropy 0.57 0.35 0.26 0.05 0.24 0.22 0.10 0.13 − 0.03 0.06 
Diff. variance 0.48 0.16 0.18 0.01 0.19 0.14 − 0.03 0.00 − 0.04 0.11 
Diff. entropy 0.55 0.36 0.27 0.03 0.28 0.23 0.07 0.11 − 0.05 0.11 
Correlation 0.31 0.12 0.05 0.04 0.05 0.09 0.09 0.13 0.02 − 0.07 
Info. corr. 1 0.03 0.07 0.00 0.05 0.11 − 0.01 0.00 0.05 ¡0.12 − 0.02 
Info. corr. 2 0.42 0.20 0.16 0.02 0.11 0.18 0.07 0.07 0.03 0.04 
Cluster 

prominence 
0.53 0.15 0.14 0.07 0.18 − 0.07 − 0.06 − 0.03 0.04 − 0.02 

Cluster shade − 0.12 − 0.13 − 0.13 − 0.05 − 0.22 0.04 0.08 0.01 − 0.02 0.02  

10 m textures (Sentinel-2):          
Std Dev 0.55 0.20 0.25 0.06 0.25 0.10 0.05 − 0.02 − 0.18 0.06 
Variance 0.55 0.09 0.18 0.05 0.21 − 0.01 0.01 − 0.08 − 0.16 0.09 
Contrast 0.71 0.35 0.33 0.12 0.46 0.13 − 0.09 0.13 − 0.31 0.03 
Dissimilarity 0.75 0.45 0.36 0.15 0.50 0.18 − 0.05 0.21 − 0.34 − 0.01 
Homogeneity ¡0.80 ¡0.51 ¡0.36 ¡0.17 ¡0.52 ¡0.22 − 0.02 − 0.26 0.35 0.06 
Entropy 0.69 0.40 0.32 0.10 0.38 0.19 0.07 0.18 − 0.23 − 0.01 
Uniformity − 0.72 − 0.40 − 0.25 − 0.05 − 0.35 − 0.21 − 0.12 − 0.22 0.22 0.04 
Sum variance 0.54 0.08 0.17 0.04 0.20 − 0.01 0.01 − 0.09 − 0.15 0.09 
Sum entropy 0.57 0.30 0.28 0.05 0.25 0.15 0.11 0.09 − 0.13 0.03 
Diff. variance 0.67 0.30 0.30 0.09 0.42 0.14 − 0.09 0.07 − 0.29 0.03 
Diff. entropy 0.75 0.47 0.35 0.15 0.50 0.21 0.00 0.24 − 0.34 − 0.02 
Correlation 0.09 − 0.13 0.02 − 0.09 − 0.22 0.03 0.16 − 0.23 0.23 0.09 
Info. corr. 1 0.37 0.40 0.16 0.21 0.50 0.14 − 0.11 0.34 ¡0.40 ¡0.16 
Info. corr. 2 0.11 − 0.12 0.04 − 0.11 − 0.24 0.02 0.16 − 0.22 0.25 0.13 
Cluster 

prominence 
0.55 0.05 0.12 0.05 0.21 − 0.03 − 0.07 − 0.12 − 0.16 0.07 

Cluster shade − 0.15 − 0.03 − 0.12 − 0.03 − 0.22 0.03 0.13 0.08 0.18 − 0.10  
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0.64 and 0.80, respectively), followed by moderate correlations with 
several field-based measures of vegetation structure, including SD of 
vegetation height (|r| ≤ 0.51) and tree stem diameter (|r| ≤ 0.52), and – 
to a lesser degree – foliage height diversity (|r| ≤ 0.36). Texture metrics 
such as homogeneity and information measure of correlation 1 were also 
correlated with plant compositional metrics, such as cover type diversity 
(|r| ≤ 0.25), percent cover of shrubs (|r| ≤ 0.40) and herbaceous plants 
(|r| ≤ 0.34) at both 30 and 10 m resolutions. However, texture metrics 
were generally more strongly correlated with structural measures of 
vegetation heterogeneity than compositional measures. 

EVI-based image texture captured distinct patterns of vegetation 
heterogeneity among the major habitat types we evaluated (i.e., forests, 
grasslands, shrublands; Fig. 3). In general, forests had highest EVI values 
and were more heterogeneous than grasslands, while shrublands tended 
to have lowest EVI values and were more homogeneous than either 
forests or grasslands. Forests and grasslands also had higher randomness 
in spatial distribution of vegetation than shrublands, characterized by 
entropy (Fig. 3f), whereas grassland and shrubland vegetation had 
higher spatial symmetry than forests, captured by cluster shade 
(Fig. 3h). Texture metrics captured high spatial variability of vegetation 
in drainage areas, particularly first-order standard deviation and 
second-order contrast (Fig. 3c, d) which highlighted marked differences 
in vegetation growth and human development in riparian areas relative 
to surrounding landscapes. 

Image texture also characterized within-habitat heterogeneity of 
vegetation. For example, in the arid southwestern US (Fig. 3, right col
umn), second-order homogeneity, entropy and information measure of 
correlation 1 captured substantial variability within a shrub-scrub 
dominated landscape, both in the Las Uvas Mountains west of the Rio 
Grande floodplain and in surrounding basins and playas (Fig. 3e–g). This 
likely reflects the ability of these texture metrics to characterize multiple 
components of vegetation heterogeneity within a single land cover type 
(Table 2). 

We observed strong correlations among many texture metrics, 
particularly among texture groups that quantify similar elements of 
image heterogeneity. For example, Spearman’s correlation coefficients 
among texture metrics of image contrast (i.e., contrast, dissimilarity, 
homogeneity) and image orderliness (i.e., uniformity, entropy, differ
ence entropy) ranged from |r| = 0.92–1.0 (Figs. S4, S5). In general, 
texture metrics from the descriptive statistics group (i.e., correlation, 
information measures of correlation) were less correlated with metrics 
from the contrast and orderliness texture groups. 

We also found positive correlations between 30 and 10 m resolution 
texture metrics, but some were surprisingly low (|r| = 0.46–0.94). 
Although texture metrics at both resolutions captured similar overall 
patterns of vegetation heterogeneity, 10 m texture metrics captured 
more details and finer-resolution features than 30 m resolution texture 
metrics (Figs. 2d-e, S6). Accordingly, 10 m resolution texture metrics 
were more strongly correlated with lidar- and field-based metrics than 
30 m resolution texture metrics (Table 2). 

3.2. Univariate bird richness models 

Consistent with our predictions, both 30 and 10 m resolution texture 
metrics had higher explanatory power in univariate models of total bird 
richness than field-based vegetation metrics, explaining up to 31% and 
45% of the variance in total bird richness, respectively, whereas field- 
based metrics only explained up to 14% (Table 3). Contrary to our 
predictions, some texture metrics also outperformed lidar-based canopy 
height variability, which explained 25% of the variance in total bird 
richness. Of all the individual predictors we evaluated, 10 m resolution 
homogeneity texture had the highest explanatory power (45% of vari
ance explained) followed closely by 10 m resolution dissimilarity (44%) 
and difference entropy (44%) textures. However, we observed consid
erable variability in the relationships between different texture metrics 
and richness of habitat specialists in forest, grassland, and shrubland 

areas. NEON lidar canopy height data and field-based measures of 
vegetation structure were limited in grassland and shrubland habitats, 
and the relationships between texture and bird richness that were sta
tistically significant but had relatively low R2 values should be inter
preted with caution. In general, texture metrics were positively related 
with richness of all birds combined and of forest specialists but were 
non-significant or weak predictors of grassland bird richness, and 
negatively related with shrubland specialist richness (Table 3). 

In univariate models of forest specialist richness, SD of field-based 
vegetation height (25% of variance explained) and total basal area 
(17%) were the strongest predictors, followed by the 10 m resolution 
homogeneity texture (16%; Table 3). Conversely, 30 m resolution 
cluster shade texture was the strongest individual predictor of grassland 
specialist richness (13%), and no field-based vegetation metrics were 
significant in univariate models for grassland specialists. Percent grass 
cover was not positively related with grassland specialist richness, 
suggesting there may not have been sufficient variability in grass cover 
at the scale of measurements to detect a relationship with bird richness, 
or that grassland specialists are responding to specific habitat features 
not included in our analysis. Shrubland specialist richness was best 
explained by 10 m resolution information measure of correlation 1 
(45%) and 30 m resolution entropy (32%) textures, and poorly 
explained by lidar canopy height variability and field-based measures. 
Overall, texture metrics had the highest explanatory power for all birds 
combined and shrubland specialists, field-based measures of vegetation 
structural heterogeneity were the best predictors of forest specialist 
richness, and all predictors had relatively low explanatory power for 
grassland specialists. 

3.3. Relative importance of textures 

We inlcuded six metrics in our multivariate models based on results 
of our exploratory correlation analyses and univariate models. We 
selected the homogeneity texture metric because it had the strongest 
relationship with total bird richness at both 30 and 10 m resolutions and 
because it is highly correlated with other texture metrics that were also 
good predictors of bird richness (e.g., dissimilarity and entropy; Table 3; 
Figs. S4, S5). We selected two additional texture metrics, information 
measure of correlation 1 and cluster shade texture, because they were 
relatively uncorrelated with homogeneity and had stronger relation
ships with grassland and shrubland specialists (Table 3). We included SD 
of lidar-based canopy height because it performed well in bird richness 
models. This was the only lidar-based metric we evaluated. Lastly, we 
included SD of field-based vegetation height and plant cover type SDI. 
Although plant cover type SDI was not a strong predictor in univariate 
models, we included it as a representative measure of vegetation 
compositional heterogeneity that was not highly correlated with struc
tural measures of lidar-based canopy height or field-based vegetation 
height (|r| = 0.30–0.41; Fig. S1). SD of lidar-based canopy height had 
the two highest correlations with SD of field-based vegetation height (| 
r| = 0.79) and 10 m resolution homogeneity (|r| = 0.73). However, these 
were three predictors of primary interest and correlations among other 
predictors were relatively low (mean |r| = 0.24), thus we chose to retain 
all six predictors in our multivariate model sets. 

The top model of total bird richness that included 10 m resolution 
texture metrics explained 55% of the variance in total bird richness and 
contained only two texture metrics: homogeneity and information 
measure of correlation 1 (Table 4). The same two texture metrics were 
selected in the top-ranked model with 30 m resolution texture metrics, 
in addition to lidar-based canopy height variability, which together 
explained 42% of the variance in total bird richness. In models con
taining both 10 and 30 m resolution texture metrics, the homogeneity 
texture had the largest effect size and a negative effect on total bird 
richness (Fig. 4). Homogeneity also had the largest independent 
contribution towards variance explained in models of total bird richness 
(Fig. 5). Again, these results should be interpreted with caution, given 
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Fig. 3. True color images (a) and examples of vegetation heterogeneity captured by enhanced vegetation index (EVI; b) and texture metrics derived from 10 m 
resolution Sentinel-2 imagery (c-h), within landscapes representing forest, grassland, and shrubland habitats: (1) mixed evergreen-deciduous forest near the Harvard 
Forest site in the northeastern US (43◦0′16′′ N, 72◦39′57′′ W); (2) tallgrass prairie in the Flint Hills of Kansas near the Konza Prairie Biological Station (39◦0′43′′ N, 
96◦18′43′′ W); and (3) shrubland in the Chihuahuan Desert near the Jornada Long Term Ecological Research site, in southwestern US (32◦35′1′′ N, 107◦0′59′′ W). All 
three featured landscapes are located close to NEON sites we evaluated (within 15–65 km) and were selected to highlight differences among texture metrics visible at 
a broader spatial extent (30 × 50 km = 150,000 ha) than inidividual NEON plots (750 × 750 m = 56.25 ha). The texture metrics featured here represent main types 
of texture metrics (Hall-Beyer, 2017), are relatively uncorrelated, and include the texture metrics in our multivariate analyses. 
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the limited availability of lidar canopy height data and field-based 
measurements of vegetation structure in NEON sites dominated by 
grasslands, and to a lesser extent shrublands. Still, these results are 
consistent with our prediction that texture would contribute indepen
dent explanatory power in multivariate models and indicates that image 
texture not only complements more common metrics of vegetation 
heterogeneity in models of bird richness, but in some cases may 
outperform them. 

Among forest specialists, top-ranked models including 30 and 10 m 
resolution texture metrics had similar explanatory power (32% and 
33%, respectively) and included field-based vegetation height vari
ability, plant cover type diversity, and homogeneity texture (Table 4). In 
both models, field-based vegetation height variability had the strongest 
effect (Fig. 4) and contributed the most independent explanatory power 
(Fig. 5). For grassland specialists, top-ranked models containing 30 and 
10 m resolution texture metrics also explained similar variance in 
richness (29% and 26%, respectively), but included only texture metrics 

(Table 4). For shrubland specialist richness, top-ranked models con
structed at both resolutions included only one texture predictor: 30 m 
resolution homogeneity explained 32% of the variance in shrubland 
specialist richness, while 10 m resolution information measure of cor
relation 1 explained 46% of the variance. 

For all species groups evaluated, variance inflation factors (VIFs) for 
predictors in top-ranked models were < 1.5 (mean VIF = 1.17; 
Table S5), indicating negligible levels of multicollinearity (Booth et al., 
1994). In spline correlograms, Moran’s I is estimated with cubic splines 
as a continuous function of distance and 95% confidence intervals are 
generated using a bootstrap approach, such that evidence for spatial 
dependence is significant when confidence intervals do not overlap zero 
(Bjornstad and Falck, 2001). Our confidence intervals for spline corre
lograms of model residuals of total bird richness among survey plots 
suggested some spatial autocorrelation at shorter lag distances, which 
may have tightened our confidence limits (e.g., Fig. 4) but spatial 
autocorrelation does not affect model coefficients or marginal effects, 

Table 3 
Results of univariate linear regression models showing relationships between lidar, field, and texture metrics, and richness of all bird species combined (n = 329) and 
forest (n = 75), grassland (n = 14), and shrubland specialists (n = 27). For each set of predictors and species group, models with the highest adjusted R2 values are 
shown in bold. Non-significant models (p < 0.05) are indicated with dashes. Note that two second-order textures, homogeneity and uniformity, quantify image ho
mogeneity, thus a negative relationship between bird richness and these textures represents a positive relationship with spatial heterogeneity of vegetation.   

All bird species Forest specialists Grassland specialists Shrubland specialists  

Est. R2
adj Est. R2

adj Est. R2
adj Est. R2

adj 

Lidar-based metric:        
SD Lidar canopy ht. 5.93 0.25 1.71 0.11 0.48 0.10 – –  

Field-based metrics:        
SD Vegetation ht. 4.32 0.13 2.52 0.25 – – – – 
Foliage ht. SDI 3.80 0.10 1.77 0.12 – – – – 
SD Tree stem diam. 4.43 0.14 1.89 0.14 – – – – 
Total basal area 3.26 0.07 2.06 0.17 – – – – 
Cover SDI 2.64 0.05 – – – – – – 
% Grass cover 1.55 0.01 − 1.13 0.04 – – – – 
% Herb. cover 3.64 0.09 – – – – – – 
% Shrub cover − 4.26 0.13 – – – – – – 
% Tree cover – – – – – – − 0.91 0.09  

30 m textures (Landsat 8):        
Std Dev 4.55 0.15 – – – – − 1.26 0.19 
Variance 3.15 0.07 – – – – − 0.84 0.07 
Contrast 4.39 0.13 – – – – − 0.87 0.08 
Dissimilarity 5.95 0.25 1.29 0.06 – – − 1.30 0.21 
Homogeneity − 6.58 0.31 − 1.74 0.12 – – 1.55 0.30 
Entropy 5.96 0.25 1.61 0.10 – – − 1.59 0.32 
Uniformity − 4.34 0.13 − 1.82 0.13 – – 1.25 0.19 
Sum variance 2.97 0.06 – – – – − 0.83 0.07 
Sum entropy 5.42 0.21 1.30 0.06 – – − 1.56 0.30 
Diff. variance 3.60 0.09 – – – – − 0.79 0.06 
Diff. entropy 6.22 0.27 1.52 0.09 – – − 1.50 0.28 
Correlation – – – – – – – – 
Info. corr. 1 3.16 0.07 – – 0.47 0.09 – – 
Info. corr. 2 3.21 0.07 – – – – − 1.42 0.25 
Prominence 1.92 0.02 – – – – – – 
Shade – – – – 0.54 0.13 – –  

10 m textures (Sentinel-2):        
Std Dev 5.44 0.21 – – – – − 1.02 0.12 
Variance 3.71 0.09 – – – – − 0.76 0.06 
Contrast 7.10 0.36 1.32 0.06 – – – – 
Dissimilarity 7.87 0.44 1.71 0.11 – – − 0.89 0.09 
Homogeneity − 7.96 0.45 − 2.01 0.16 − 0.43 0.07 0.88 0.08 
Entropy 6.93 0.34 1.47 0.08 – – − 1.15 0.16 
Uniformity − 4.67 0.15 − 1.57 0.09 – – 0.78 0.06 
Sum variance 3.52 0.08 – – – – − 0.76 0.06 
Sum entropy 6.10 0.26 1.00 0.03 – – − 1.24 0.19 
Diff. variance 6.69 0.32 1.06 0.04 – – – – 
Diff. entropy 7.88 0.44 1.75 0.12 – – − 0.94 0.10 
Correlation – – – – – – − 1.42 0.25 
Info. corr. 1 5.40 0.21 1.88 0.14 0.48 0.10 1.87 0.45 
Info. corr. 2 1.98 0.02 – – – – − 1.58 0.31 
Prominence 1.91 0.02 – – – – – – 
Shade − 1.70 0.02 – – 0.49 0.10 – –  
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Table 4 
Competing models of bird richness ranked by Bayesian information criterion (BIC). Results are shown for top-ranked models and models with ΔBIC <2, for all species 
combined (n = 329) and forest (n = 75), grassland (n = 14), and shrubland specialists (n = 27). Models shown in (a) included 30 m resolution textures, and in (b) 
included 10 m resolution textures. Predictor abbreviations: intercept (Int.), standard deviation of lidar-based canopy height (SD Lidar canopy ht.) and field-based 
vegetation height (SD Veg. ht.), Shannon diversity index of plant cover (Cover SDI), information measure of correlation 1 (Info. corr. 1), and cluster shade 
(Shade). Adjusted R2 values in bold for top-ranked model in each group; predictors not included in top models are indicated by dashes.  

(a) 30 m texture models (Landsat 8):  

Mod. 
rank 

Int. SD Lidar canopy 
ht. 

SD Veg. ht. Cover SDI Homo- 
geneity 

Info. corr. 1 Shade df logLik BIC ΔBIC Wt. R2
adj 

All 1 26.50 3.04 – – − 4.75 2.77 – 5 − 806.3 1639.6 0.00 0.79 0.42 
Forest 1 14.44 – 2.17 − 1.04 − 1.02 – – 5 − 310.1 643.8 0.00 0.22 0.32  

2 14.44 – 2.52 – – – – 3 − 314.8 643.8 0.04 0.22 0.26  
3 14.44 – 2.60 − 0.84 – – – 4 − 312.7 644.2 0.46 0.18 0.29  
4 14.44 0.97 2.14 − 1.10 – – – 5 − 310.7 644.9 1.15 0.12 0.31  
5 14.44 – 2.18 – − 0.77 – – 4 − 313.4 645.6 1.83 0.09 0.28 

Grass 1 2.43 – – – – 0.53 0.59 4 − 74.5 164.4 0.00 0.32 0.29  
2 2.43 – – – − 0.33 0.51 0.57 5 − 72.6 164.5 0.08 0.31 0.35 

Shrub 1 1.90 – – – 1.55 – – 3 − 116.4 244.6 0.00 0.44 0.32  

(b) 10 m texture models (Sentinel-2):  
Mod. 
rank 

Int. SD Lidar canopy 
ht. 

SD Veg. ht. Cover SDI Homo- 
geneity 

Info. corr. 1 Shade df logLik BIC ΔBIC Wt. R2
adj 

All 1 26.50 – – – − 7.06 3.65 – 4 − 778.6 1578.8 0.00 0.64 0.55 
Forest 1 14.44 – 2.03 − 1.01 − 1.22 – – 5 − 309.1 641.8 0.00 0.23 0.33  

2 14.44 – 2.18 − 0.90 – 1.10 – 5 − 309.4 642.3 0.59 0.17 0.33  
3 14.44 – 2.11 – – 1.04 – 4 − 312.0 642.8 1.08 0.13 0.30  
4 14.44 – 1.86 − 1.01 − 0.92 0.79 – 6 − 307.5 643.3 1.54 0.11 0.35  
5 14.44 – 2.02 – − 1.03 – – 4 − 312.4 643.5 1.75 0.09 0.29 

Grass 1 2.43 – – – − 0.51 – 0.56 4 − 75.6 166.6 0.00 0.31 0.26  
2 2.43 – – – − 0.43 0.30 0.51 5 − 74.4 168.0 1.32 0.16 0.30  
3 2.43 – – 0.25 − 0.49 – 0.57 5 − 74.6 168.5 1.84 0.12 0.29 

Shrub 1 1.90 – – – – 1.88 – 3 − 110.2 232.3 0.00 0.40 0.46  
2 1.90 − 0.42 – – – 1.80 – 4 − 109.1 234.1 1.72 0.17 0.49  

Fig. 4. Standardized regression coefficients are shown for predictors in top bird richness models for four species groups, as measures of effect size (with 95% 
confidence intervals). Results are shown for models that included (a) 30 m resolution (Landsat 8) and (b) 10 m resolution (Sentinel-2) EVI textures. 
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which we focused on when evaluating our models (Fig. S7; Fletcher and 
Fortin, 2018). 

4. Discussion 

We linked image texture with localized vegetation attributes in 
landscapes across the continental US and found that satellite image 
texture captured multiple components of vegetation heterogeneity that 
influence species richness patterns, across a range of ecosystems. In 
general, image texture was more strongly correlated with measures of 
vegetation structure than composition, particularly measures of vertical 
vegetation structure. However, texture was also correlated with some 
elements of plant compositional diversity. In models of bird richness, we 
found that texture complemented both lidar-based canopy height vari
ability and field-based metrics of vegetation heterogeneity, and showed 
an even stronger relationship with patterns of bird richness for some 
guilds. 

4.1. Texture characterization of vegetation heterogeneity 

Image texture was positively correlated with several different fea
tures of vegetation heterogeneity. At both 30 and 10 m resolutions, 
texture metrics were most strongly correlated with lidar-based canopy 
height variability, followed by SD of field measured vegetation height 
and tree stem diameter, and foliage height diversity. These are all 
related measures of structural heterogeneity that characterize different 
elements of vegetation configuration in three-dimensions (O’Brien et al., 
1995). We found that image texture was most strongly related to vertical 
complexity of plant structure but was also weakly to moderately 
correlated with compositional heterogeneity measures, such as plant 
cover type diversity and percent shrub and herbaceous cover. This 
suggests satellite image texture may offer the advantage of 

characterizing vegetation structural complexity while also providing 
ancillary information about plant compositional heterogeneity. In many 
environments, plants form the physical structure of habitats and thus 
have a strong effect on species richness patterns (McCoy and Bell, 1991). 
However, both the structural and compositional heterogeneity of vege
tation can increase available niche space and are important de
terminants of species distributions and diversity (Lee and Rotenberry, 
2005; Schuldt et al., 2019). 

Measurements of heterogeneity depend on the spatial resolution of 
imagery (Rocchini, 2007; Gillespie et al., 2008). Coarse-resolution sat
ellite images often have mixed pixels when features of interest are 
smaller than the resolution of the image (Foody and Cox, 1994). Image 
texture metrics at the two resolutions we evaluated were correlated and 
had similar relationships with lidar- and field-based vegetation metrics. 
However, 10 m resolution texture metrics were generally more strongly 
correlated with lidar- and field-based metrics than 30 m texture metrics, 
suggesting image texture derived from 10 m resolution Sentinel-2 im
agery is better able to characterize vegetation features of interest. Our 
findings are consistent with other studies evaluating these spatial reso
lutions for mapping vegetation characteristics. For example, vegetation 
metrics based on Sentinel-2 imagery outperformed metrics based on 
Landsat 8 imagery in quantifying structural diversity of high-elevation 
forests (Morley et al., 2019), and Sentinel-2 data were better pre
dictors of field-based vegetation metrics than data from Landsat 8 in a 
boreal forest (Astola et al., 2019). 

4.2. Texture and bird richness 

We also found that several texture metrics derived from 30 and 10 m 
resolution imagery had strong relationships with bird richness. Texture 
metrics had higher explanatory power than field-based metrics in uni
variate models of total bird richness, which may partly reflect the 

Fig. 5. Relative influence of predictors in top bird richness models for four species groups, as measured by independent and joint contributions from hierarchical 
partitioning. Results are shown for models that included (a) 30 m resolution (Landsat 8) and (b) 10 m resolution (Sentinel-2) EVI textures. Note that top models for 
shrubland specialists included only one predictor (independent contribution only). 
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continuous measures of vegetation heterogeneity that image texture 
provides across landscapes, whereas field-based metrics are derived 
from data sampled over limited spatial extents (Rocchini et al., 2010). 
Bird richness may also have been more strongly related to texture in 
univariate models because individual texture metrics captured multiple 
facets of vegetation complexity, and bird-habitat relationships are 
complex and influenced by both vegetation structure and composition 
(Rotenberry, 1985; Skowno and Bond, 2003). Univariate model results 
should be interpreted with caution, however, because field-based met
rics of vegetation structure and composition can be combined in 
multivariate models to increase explanatory power (e.g., Table 4). 
Similarly, some texture metrics were also stronger predictors of total 
bird richness than lidar-based canopy height variability. This contra
dicted our prediction that texture metrics and lidar canopy height 
variability would have comparable explanatory power in bird richness 
models. Yet, 2.5 m resolution satellite image texture also has similar or 
higher explanatory power than lidar-derived vertical structure metrics 
in models of bird diversity in an Ecuadorian rainforest (Wallis et al., 
2016), and 30 m texture metrics outperform both field-measured 
vegetation structure and 1 m resolution air photo textures in models 
of bird richness in grassland, savanna, and woodland habitats in the 
Midwestern US (Wood et al., 2013). Our findings are consistent with 
these prior studies, and demonstrate the utility of texture metrics 
derived from medium-resolution satellite imagery for modeling bird 
richness. 

Just as spatial resolution affects the ability of imagery to capture 
vegetation characteristics, resolution can also influence the relationship 
between vegetation heterogeneity and biodiversity (Bar-Massada et al., 
2012) and may have influenced differences we observed among habitats 
evaluated. Broadly, our findings demonstrate that 10 to 30 m resolution 
image texture characterizes spatial heterogeneity of vegetation that in
fluences overall bird richness across different habitats, as well as rich
ness of specialists within forests and shrublands. However, these spatial 
resolutions may be too coarse to effectively capture finer-resolution 
features within grasslands (Ali et al., 2016), particularly microhabitat 
variations that are important for birds such as fine-scale vegetation 
height and density, litter cover and depth, and amount of bare ground 
and dead vegetation (Fisher and Davis, 2010; Jacobs et al., 2012). It is 
possible that textures calculated from higher resolution imagery (e.g., 
Lussem et al., 2019) or the integration of field-data and remotely sensed 
metrics (Ali et al., 2016) can better characterize these fine-scale features 
of grassland heterogeneity. 

We also found that 10 m resolution texture consistently out
performed 30 m resolution texture in bird richness models, most likely 
because 10 m resolution texture more effectively captured multiple 
features of vegetation complexity known to influence bird communities 
(Rotenberry, 1985; Skowno and Bond, 2003). This result is consistent 
with previous findings that vegetation metrics based on finer resolution 
imagery (2–5 m) outperform those derived from coarser resolution im
agery (10–250 m) in bird richness models of both farmland-woodland 
(Sheeren et al., 2014) and forest landscapes (Ozdemir et al., 2018), 
although 10 m indices perform almost as well in both landscapes. 
However, higher resolution metrics do not always show stronger re
lationships with biodiversity patterns, especially when vegetation fea
tures are larger than the pixel resolution (Nagendra and Rocchini, 
2008). Given the discrepancy in predictive power of texture that we 
observed among habitat types, we suggest that both the spatial resolu
tion of imagery and the extent of analysis (i.e., sampling units and 
moving window size) should be carefully chosen to ensure patterns of 
interest are captured at scales relevant for the taxa of interest. 

In univariate models at both resolutions we evaluated, the individual 
texture with the highest explanatory power for total bird richness was 
homogeneity, followed closely by dissimilarity and entropy. This finding 
is consistent with previous studies that used image texture to model bird 
richness (Culbert et al., 2012; Tuanmu and Jetz, 2015; Farwell et al., 
2020). Homogeneity quantifies the smoothness of an image, with high 

values indicating an absence of feature complexity and locally even 
distribution of image features (Hall-Beyer, 2017). Dissimilarity quan
tifies image contrast, with higher values reflecting sharp differences 
among neighboring features. Entropy quantifies image non-uniformity, 
with higher values reflecting randomness in the distribution of image 
features. We found that these texture metrics were highly correlated, 
similar to others (St-Louis et al., 2006; Culbert et al., 2012; Farwell et al., 
2020). Thus, although the four texture metrics that had the highest 
explanatory power for total bird richness may capture slightly different 
aspects of image contrast and orderliness (i.e., homogeneity, dissimi
larity, entropy, difference entropy), we suggest that a single represen
tative texture metric of image contrast or orderliness may be sufficient to 
capture a range of vegetation heterogeneity features that are important 
for species. 

When we evaluated multivariate models of bird richness that com
bined texture metrics, lidar canopy height variability and field-based 
measurements, we found that texture metrics complemented the other 
more commonly used vegetation metrics and in some cases out
performed our other predictors. Texture had significant associations 
with patterns of bird richness and contributed the most independent 
explanatory power in several multivariate models. This may partly 
reflect limitations of the NEON lidar canopy height data and field-based 
measures of vegetation structure in grassland and shrubland habitats. 
However, this may also reflect the wall-to-wall coverage provided by 
satellite image texture, in addition to our finding that texture metrics are 
able to capture multifaceted complexity of vegetation structure and 
composition. These may be important advantages of using texture 
metrics in combination with field-based metrics with limited spatial 
coverage and/or lidar-based measures which primarily characterize 
three-dimensional structure of vegetation (Davies and Asner, 2014; 
Vogeler et al., 2014). However, we acknowledge that in our model se
lection framework, the top-ranked model for each bird group is only the 
best model relative to the limited number of models and predictors 
considered. Still, our results were consistent across image resolutions, 
habitat types, and bird groups and highlight cases in which textures can 
be used to improve biodiversity models. 

4.3. Caveats and considerations 

It is important to keep several caveats related to the NEON data in 
mind when interpreting these results. First, the exclusion of vegetation 
<2 m tall from the lidar canopy height model provided by NEON 
resulted in limited canopy height data in grassland habitats, and to a 
lesser extent in shrubland habitats. This likely contributed to the rela
tively poor performance of our lidar-based canopy height variability 
metric in models of bird richness. However, in models of forest specialist 
richness that focused on forest-dominated landscapes with ample NEON 
lidar canopy height data, image texture still outperformed lidar-based 
canopy height variability. Additionally, even in grassland and shrub
land habitats with limited lidar data, image texture alone explained 
26–29% of the variance in grassland specialist richness, and 32–46% of 
the variance in shrubland specialist richness. 

Second, there were limitations in the NEON field measures of vege
tation. Structural metrics were only available for woody vegetation, 
resulting in limited field data for habitats dominated by grass and her
baceous vegetation. Additionally, we had to derive vegetation compo
sitional heterogeneity from plant presence and percent cover (PPPC) 
data collected in 1 m2 plots, representing a very limited spatial extent. It 
is possible that more comprehensive plant cover and species data might 
have improved the performance of compositional metrics in models of 
bird richness. Nevertheless, the vegetation sampling approach used by 
NEON is standardized for various features of vegetation heterogeneity 
(Barnett et al., 2019b), and thus were appropriate for comparison with 
EVI-based image textures. Lastly, while we could have evaluated addi
tional lidar- and field-based metrics, our intention here was to compare 
the performance of image texture with other readily available, 
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commonly used measures of vegetation heterogeneity. 

4.4. Conclusions and conservation implications 

By linking image texture directly with both lidar- and field-based 
vegetation measures and bird richness, we demonstrate that satellite 
image texture captures multiple components of vegetation heterogene
ity that are important for explaining biodiversity patterns. We found that 
texture was strongly correlated with measures of vegetation structural 
complexity, but also provided information about plant compositional 
heterogeneity. We suggest this helps to explain why image texture based 
on either 10 or 30 m resolution satellite data performed quite well in our 
models of bird species richness. This has important conservation im
plications because species distributions and diversity are influenced by 
the heterogeneity of both vegetation structure and composition. Our 
results indicate that textures are not just easy-to-obtain surrogates for 
lidar- and field-based measures of vegetation complexity, but are com
plementary and strong predictors of species richness, in their own right. 
Notably, we found that a single second-order texture measure (e.g., 
homogeneity, dissimilarity, or entropy) may be sufficient to significantly 
improve biodiversity models. Image resolution is important though, and 
we found that 10 m Sentinel-2 image texture clearly outperformed 30 m 
Landsat texture. Our findings are important because advances in cloud 
computing for remote sensing data have increased the accessibility of 
satellite imagery and reduced the processing time for image texture 
calculations, making it possible to include 10–30 m resolution image 
textures for ecological applications at continental scales. We acknowl
edge the inherent challenge of managing a given landscape for 
“increased texture” (e.g., lower homogeneity), and the value of both 
lidar and field data when interpreting texture measures. In general, we 
suggest that texture metrics are best suited to identify and prioritize 
heterogeneous landscapes that already have high potential for sup
porting biodiversity, and to improve species distribution models and 
change projections. We recommend that future studies consider 
including image texture in biodiversity models, especially for species 
groups or taxa that are strongly associated with vegetation 
heterogeneity. 
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