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planning. Landsat 8's Thermal Infrared Sensor (TIRS) allows direct mapping of temperature at moderate spatial
resolutions (100 m, downscaled by the USGS to 30 m), overcoming limitations inherent in coarse interpolated
weather station data that poorly capture fine-scale temperature patterns over broad areas. TIRS data thus offer
the unique opportunity to understand how the thermal environment influences species richness patterns. Our
aim was to develop and assess the ability of TIRS-based temperature metrics to predict patterns of winter bird
richness across the conterminous United States during winter, a period of marked temperature stress for birds.
We used TIRS data from 2013-2018 to derive metrics of relative temperature and intra-seasonal thermal het-
erogeneity. To quantify winter bird richness across the conterminous US, we tabulated the richness only for
resident bird species, i.e., those species that do not move between the winter and breeding seasons, from the
North American Breeding Bird Survey, the most extensive survey of birds in the US. We expected that relative
temperature and thermal heterogeneity would have strong positive associations with winter bird richness be-
cause colder temperatures heighten temperature stress for birds, and thermal heterogeneity is a proxy for
thermal niches and potential thermal refugia that can support more species. We further expected that both the
strength of the effects and the relative importance of these variables would be greater for species with greater
climate sensitivity, such as small-bodied species and climate-threatened species (i.e., those with large dis-
crepancies between their current and future distributions following projected climate change). Consistent with
our predictions, relative temperature and thermal heterogeneity strongly positively influenced winter bird
richness patterns, with statistical models explaining 37.3% of the variance in resident bird richness. Thermal
heterogeneity was the strongest predictor of small-bodied and climate-threatened species in our models, whereas
relative temperature was the strongest predictor of large-bodied and climate-stable species. Our results de-
monstrate the important role that the thermal environment plays in governing winter bird richness patterns and
highlight the previously underappreciated role that intra-seasonal thermal heterogeneity may have in supporting
high winter bird species richness. Our findings thus illustrate the exciting potential for TIRS data to guide
conservation planning in an era of global change.

1. Introduction species distributions and give rise to biodiversity patterns at broad
spatial scales (Brown et al., 1996). Climatic factors have particularly

Understanding the determinants of species richness is a fundamental strong associations with species richness (Boucher-Lalonde et al.,
goal of ecology (Hawkins et al., 2003) and is essential to defining 2014), including that of endothermic species such as birds (Howard
conservation priorities (Brooks et al., 2006) and predicting biodiversity et al., 2018). Indeed, at continental to global scales, climatic factors
responses to global change (Brook et al., 2008). Many factors govern outweigh land cover in explaining bird abundance (Howard et al.,

* Corresponding author. SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
E-mail address: pelsen@wcs.org (P.R. Elsen).

https://doi.org/10.1016/j.rse.2019.111514

Received 12 March 2019; Received in revised form 17 October 2019; Accepted 29 October 2019
Available online 14 November 2019

0034-4257/ © 2019 Elsevier Inc. All rights reserved.


http://www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2019.111514
https://doi.org/10.1016/j.rse.2019.111514
mailto:pelsen@wcs.org
https://doi.org/10.1016/j.rse.2019.111514
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2019.111514&domain=pdf

P.R. Elsen, et al.

2015) and richness (Davies et al., 2007).

Among climatic factors, temperature plays a dominant role in
driving species richness. For example, warmer temperatures influence
richness patterns by increasing the number of metabolic niches (Clarke
and Gaston, 2006) and by reducing physiological burdens (Currie,
1991; Currie et al., 2004), thereby permitting more species to occur.
Ample evidence showing that species' distributions can be limited by
their physiological tolerances of temperature supports these hypotheses
(Khaliq et al., 2014; Root, 1988).

The strong influence of the thermal environment has important
consequences for endothermic species which must maintain body
temperature well above ambient temperature for necessary physiologic
function during winter, a period typically characterized by low tem-
peratures and heightened climatic stress on physiology (Newton, 1998;
Williams et al., 2014). A prominent example of this influence is the
northward shift of wintering bird ranges in North America following
recent warming trends (La Sorte and Thompson, 2007), suggesting a
strong link between temperature and wintering bird distributions.
While some species are able to cope with climatic stress by modifying
foraging or roosting behaviors (Kwit et al., 2004), other species rely on
fine-scale site occupancy decisions in regions with thermal hetero-
geneity to minimize exposure to extreme hot or cold temperatures
(Scheffers et al., 2013). Thus, regions with high thermal heterogeneity
would be expected to have higher species richness, and thermal het-
erogeneity may be a particularly important factor driving species
richness at higher latitudes where species experience extreme cold
conditions more frequently. This notion is supported by recent me-
chanistic models explaining richness patterns in hyper-diverse bird
communities across South America (Rangel et al., 2018). However,
while recent research has highlighted annual temperature seasonality
as an important driver of bird species richness at broad scales (Howard
et al., 2018), there has been no assessment of the importance of within-
season thermal heterogeneity in explaining continental-scale species
richness patterns.

Data from the Thermal Infrared Sensor (TIRS) onboard Landsat 8
now enables mapping of temperature at 100 m resolution (Jimenez-
Munoz et al., 2014). This is exciting when assessing thermal hetero-
geneity, because remotely-sensed thermal data avoid the pitfalls asso-
ciated with interpolated temperature surfaces from weather stations
(Behnke et al., 2016), and provide more ecologically-relevant in-
formation for modeling abundance (Pianalto and Yool, 2017) and
predicting species distributions and richness patterns (Albright et al.,
2011; Deblauwe et al., 2016). In particular, the spatial resolution of the
TIRS data (100 m downscaled to 30 m by the USGS) offers substantial
advantages for capturing spatial variability of the thermal environment
compared to coarser resolution sensors, such as MODIS (1 km), to more
accurately predict biodiversity patterns at broad spatial scales (Tuanmu
and Jetz, 2015). Furthermore, utilizing thermal data directly in in-
vestigations of biodiversity patterns overcomes the limitations of often-
used proxy measures for temperature, such as elevation or topographic
complexity, that may poorly reflect true temperature gradients and that
are correlated with other abiotic factors, thereby limiting robust in-
ference (Minder et al., 2010).

Our goal was to develop new metrics of relative temperature and
thermal heterogeneity during winter from Landsat 8 TIRS data for
biodiversity studies, and to assess their performance in predicting pat-
terns of winter bird richness across the conterminous US. We chose the
conterminous US as our spatial extent because it contains (1) a large
range of both relative temperature and thermal heterogeneity, (2) en-
vironmental data necessary to isolate the unique contribution of
thermal factors (i.e., control data) at consistent spatial resolutions, and
(3) a rich and extensive set of biodiversity data originating from stan-
dardized, decades-long monitoring programs. We chose to focus on
winter bird communities because temperature plays a particularly
strong role in regulating bird populations during this season (Newton,
1998). To determine winter bird richness patterns across the
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conterminous US, we analyzed only resident bird species, i.e., those that
are present at a given location throughout the year, from the North
American Breeding Bird Survey (BBS), the most extensive survey of
birds in the US.

We predicted that winter bird species richness would be positively
associated with warmer relative temperatures and greater thermal
heterogeneity because colder temperatures challenge birds’ ability to
maintain their body temperature in an optimal range (Root, 1988), and
greater thermal heterogeneity can provide more niches potentially
supporting more species (Letten et al., 2013). We further predicted that
relative temperature and thermal heterogeneity would in particular
affect richness patterns of bird species with greater sensitivities to
thermal environments, i.e., small- versus large-bodied species, and
species under greater threat from climate change. Specifically, we
predicted that small-bodied species, which generally have lower ther-
moregulatory abilities than large-bodied species (Porter and Kearney,
2009), would be more sensitive to colder conditions and thus that both
relative temperature and thermal heterogeneity would more strongly
predict their species richness patterns. We also predicted that climate-
threatened species—those with large discrepancies between their cur-
rent and future distributions following projected climate change
(Langham et al., 2015)—would be more associated with areas of high
thermal heterogeneity because these species tend to occur in moun-
tainous areas that exert strong temperature gradients and are char-
acterized by pronounced thermal heterogeneity (La Sorte and Jetz,
2010; Sekercioglu et al., 2008).

2. Methods
2.1. Remotely sensed data

2.1.1. Landsat 8 Thermal Infrared Sensor (TIRS) data

To develop metrics of relative temperature and thermal hetero-
geneity with which to predict winter bird richness patterns across the
conterminous US, we analyzed data from the Thermal Infrared Sensor
(TIRS) of Landsat 8. Launched in February 2013, the thermal imaging
by the TIRS consists of two bands (Bands 10 and 11) centered on 10.9
and 12 pm, respectively, that collect thermal data at 100 m resolution
(Jimenez-Munoz et al., 2014). The data are resampled to 30 m using
cubic convolution to match the native resolution of imagery provided
by the Operational Land Imager (Roy et al., 2014). The resampled TIRS
imagery thus represents the highest-resolution source of remotely-
sensed thermal data available for the conterminous US. Out-of-field
stray light has led to some bias in both thermal bands, and has parti-
cularly affected Band 11 (Barsi et al., 2014). We therefore used data
only from Band 10 in our analysis.

We used imagery from Landsat 8 Surface Reflectance Tier 1, which
is atmospherically corrected and contains the TIRS Band 10 data pro-
cessed to orthorectified brightness temperature. As our focus was on
relative rather than absolute temperature measurements, we did not
require any further processing. Relative temperature can adequately
capture thermal heterogeneity and may not suffer from biases in-
troduced by further processing (Young et al., 2017). We first selected all
images collected in the conterminous US between December—February
of each year from 2013 to 2018 to bound the winter period. We then
used the included QA flags to mask out clouds (including cirrus clouds),
cloud shadows, and water based on the CFMASK algorithm, and used a
static water mask derived from Landsat imagery (Hansen et al., 2013)
to limit potential artifacts from ice. All imagery was obtained and
processed in Google Earth Engine (GEE; ImageCollection ID LANDSAT/
LC08/C01/T1_SR).

We calculated two metrics related to the thermal environment that
we hypothesized would influence winter bird richness patterns. The
first variable is a metric of relative temperature (Fig. 1a), which we de-
rived by first calculating the mean value withina 11 x 11 pixel moving
window from each image and assigning it to the central pixel of the
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Fig. 1. Maps of relative temperature (a) and thermal heterogeneity (b) for the conterminous US based on thermal satellite imagery from Landsat 8 (TIRS band 10).
(c—j) Detailed relative temperature and thermal heterogeneity maps for regions of the Great Plains in Iowa (c, g); the southern Rocky Mountains (d, h); Tucson,
Arizona and the surrounding Santa Catalina Mountains (e, i); and fields in the Central Valley near Fresno, California (f, j). Letters and boxes in (a) and (b) denote inset

locations in (c—j).

window, and subsequently taking the median value of those means
across the image stack. We chose 11 x 11 pixel window sizes
(equivalent to 108,900 m?) in our analysis to maintain a relatively high
spatial resolution that could then be summarized within each BBS route
buffer (see below), noting that the predictive performance of first-order
texture measures on bird richness patterns are relatively robust to the
choice of window size (St-Louis et al., 2006).

The second variable is a metric of thermal heterogeneity (Fig. 1b),
which we derived by first calculating the standard deviation value
within a 11 x 11 pixel moving window from each image and assigning
it to the central pixel of the window, and subsequently taking the
median value of those standard deviations across the image stack. For
both metrics, we tested alternative algorithms, such as calculating the
mean value of the coldest winter image, but those efforts sometimes
resulted in stark temperature contrasts between adjacent Landsat paths,
or resulted in large data gaps due to clouds and their shadows in the
coldest scene. Our approach as outlined above minimized these issues
and produced almost seamless composites with few data gaps (Figs. 1a,

b, S1).

Our analysis thus resulted in two continuous layers of thermal
metrics across the conterminous US at a spatial resolution of 30 m
(Fig. 1a and b). We then took the mean value of each variable within a
19.7 km radius buffer of each BBS route's centroid for further analysis,
following established methodologies utilizing BBS data (Pidgeon et al.,
2007; Rittenhouse et al., 2012). We chose a 19.7 km radius as it is
equivalent to half the distance of a BBS route and thus encompasses an
entire route. We calculated each BBS route centroid from the minimum
bounding rectangle encompassing the georeferenced route.

Altogether, our data processing workflow included three important
steps to minimize potential spatial and temporal biases in calculations
of relative temperature and thermal heterogeneity arising from varia-
bility in the number of TIRS observations that were unobstructed by
clouds and snow. First, by using an 11 X 11 pixel window in our ana-
lysis to calculate mean values to assign to the central pixel, we in-
corporated information from the entire 108,900 m?® window neigh-
borhood, reducing the influence of no-data pixels. Second, by taking the
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median pixel value across the image stack of six years of winter data (a
total of 18 months) in calculations, we minimized temporal patterns of
bias by deriving representative winter temperatures. Finally, by sum-
marizing each metric by taking the mean value within BBS route buffers
of 19.7 km radius (a total area of 1219 km?), we significantly reduced
spatial patterns of bias by averaging temperatures derived from po-
tentially different numbers of thermal observations per pixel.

2.1.2. Ancillary remotely-sensed environmental variables

We included five additional ancillary environmental variables re-
lated to elevation, topography, and land cover that are known to in-
fluence bird richness patterns at regional to continental scales as control
variables in our analysis (Davies et al., 2007; McCain, 2009; Rahbek
and Graves, 2001; Tuanmu and Jetz, 2015; van Rensburg et al., 2002).
We used a void-filled version of the NASA Shuttle Radar Topography
Mission (SRTM) digital elevation model at 1 arc-second (30m) re-
solution (GEE Image ID USGS/SRTMGL_003), which matches the re-
solution of our thermal data. Using these data, we derived a metric of
topographic heterogeneity known as the terrain ruggedness index (TRI;
Riley et al., 1999), which is calculated as the square root of the sum of
squared differences between a focal pixel and its eight neighbors (e.g.,
within a 3 X 3 pixel moving window). To summarize the data for each
BBS route, we first calculated the TRI across the conterminous US and
then took the mean TRI value within each BBS route buffer as above.
We further calculated the mean elevation within each BBS route buffer
using the SRTM data. Topographic heterogeneity and elevation are
often considered as proxies for thermal heterogeneity and relative
temperature in studies predicting species richness patterns (Davies
et al., 2007; Rahbek and Graves, 2001). By including these variables in
our analysis, our objective was to isolate the true effects of relative
temperature and thermal heterogeneity on bird richness, independent
of temperature gradients and heterogeneity arising from topographic
complexity and temperature change over elevation.

Many species also have distinct habitat affinities, such that the
spatial distribution of land cover across the US can also influence bird
richness patterns. To control for this source of environmental varia-
bility, we used the USGS National Land Cover Database (NLCD), a
Landsat-based land cover classification for the continental US at a
spatial resolution of 30 m, again matching the spatial resolution of our
other environmental variables. We used the 2011 version of the NLCD
(GEE ImageCollection ID USGS/NLCD), the most recent version avail-
able, and that which most closely matched the time period of the TIRS
data (Homer et al., 2015). We focused on three natural vegetation types
that represent broad-scale habitat types for birds: forest (combining
deciduous, evergreen, and mixed forest classes), shrubland, and grass-
land. To summarize the data for each BBS route buffer, we calculated
three variables representing the proportion of all pixels that were
classified as forest, as shrubland, or as grassland.

2.2. Bird survey data

We used data from both the North American Breeding Bird Survey
(BBS, http://www.mbr-pwrc.usgs.gov/bbs) and the Christmas Bird
Count (CBC, http://www.audubon.org/conservation/science/
christmas-bird-count) to calculate winter bird richness patterns across
the conterminous US. The BBS is the most extensive standardized
survey of birds in the US (Sauer et al., 2017), consisting of an annual
survey of breeding birds by volunteer observers along 39.4 km routes
(4027 total routes). The primary limitation of the BBS for the purposes
of our analysis is that bird distribution data are not collected during
winter, which is a temporal mismatch with our predictor variables.
Therefore, in order to adequately quantify bird richness patterns during
winter, we restricted our analysis to include only those species with
stable year-round distributions (i.e., resident species) and excluded
short- and long-distance migratory species. We reviewed the known
movement patterns of each resident species included in our analysis
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based on data in the Birds of North America (Rodewald, 2015). We
classified species as ‘sedentary residents’ (i.e., species reported to not
move from the breeding grounds during winter), ‘residents exhibiting
localized movement’ (i.e., species reported to remain close to the
breeding grounds year-round, with some localized movements), and
‘residents exhibiting longer-distance movement’ (i.e., species reported
to show more extensive movement during the non-breeding season;
Tables S1 and S2). The categories are not mutually exclusive, and a
given species could be assigned to multiple categories if, for example,
individuals or populations of a species remain sedentary while others
are known to move (i.e., the species exhibits partial migration). How-
ever, 95% of resident species included in our analysis were classified
solely as either ‘sedentary resident’ or ‘resident with localized move-
ment’, or both, which suggests that richness patterns based on data
collected during the breeding season for these species should closely
reflect richness patterns during the winter.

We also considered an alternative, US-wide survey of winter birds,
the Christmas Bird Count (CBC, http://www.audubon.org/
conservation/science/christmas-bird-count), because it aligns more
closely with the seasonal timing of our predictors, and we conducted all
our analyses with both datasets. However, there are a number of biases
in the CBC data, and several advantages of the BBS that make the BBS
more suitable for our research questions, and that is why we show BBS
results in the main manuscript and CBC results in the Supplementary
Material. These include: (1) there are more BBS survey locations than
CBC survey locations (2743 BBS routes versus 1944 CBC circles from
2013-2018; Fig. S7a; Fig. S8), resulting in 40% more richness ob-
servations in our BBS-based analysis; (2) the survey extent of BBS routes
is 3.75 times greater than that of CBC circles (buffered BBS routes cover
an area of 3.34 million km? in our analysis versus an area of 0.89
million km? for CBC circles), which captures more variation in our
predictors and helps improve inferences on how they may influence
richness patterns; (3) BBS survey locations are more evenly distributed
throughout the conterminous US, with much more adequate coverage
between California and Mississippi (Butcher et al., 1990), whereas CBC
circles are biased towards the Northeast and West Coast (Fig. S7a; Fig.
S8); (4) land cover near BBS survey routes is more representative of the
conterminous US, whereas the CBC circles are biased towards urban
areas: on average, the proportion of developed land within CBC circles
is 2.8 times higher than the conterminous US as a whole (https://www.
mrlc.gov/data/statistics/national-land-cover-database-2016-nlcd2016-
statistics-2016), and 2.3 times greater than the proportion of developed
land within BBS route buffers based on summarized NLCD data within
respective survey extents (BBS routes: mean = 0.063, SD = 0.07; CBC
circles: mean = 0.15, SD = 0.17; Fig. S7b); and (5) BBS surveys are
standardized and survey effort is equal among routes whereas CBC
surveys differ in terms of survey effort by four orders of magnitude and
can include any number of observers who are allowed to cover as much
or as little of the CBC circle and use any method to count birds, in-
cluding recording observations from bird feeders (Link et al., 2008;
Figs. S7c and S7d). Unfortunately, there is no way to correct for the
biases listed under 3) and 4) above, and while we corrected for survey
effort in our CBC-based analyses (see Supplementary Material), those
corrections are imperfect. Therefore, we deemed the BBS data for re-
sident species only, i.e., those species whose breeding distributions
closely reflect winter distributions, to be more suitable for our study
and present our BBS-based findings in the main manuscript, and the
qualitatively similar CBC-based findings in the Supplementary Material
(Figs. S9-10).

During BBS surveys, the occurrence and abundance of all birds
along a route are recorded during 3-min counts at 50 stops each spaced
0.8 km apart along with ancillary data describing observer, observation
date and time, and weather conditions. Each route is surveyed once per
year between May and July, when species are typically breeding and
detectability is maximized. Observations are checked for validity and
potentially erroneous or questionable entries are flagged. To ensure
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high data quality, we excluded all observations made by an observer in
their first year on a given route, which can lead to biased observations
(Kendall et al., 1996), or where data quality flags indicated routes that
a) were not randomly located; b) were not surveyed using the official
BBS sampling protocol; or c¢) did not meet the BBS weather, date, time,
and route completion criteria. Such records are flagged with a RunType
Code of ‘0’ in the BBS metadata, so we selected all records with a
RunType Code of ‘1’, which indicates that the observation meets official
BBS criteria.

BBS routes are distributed throughout North America, but we re-
stricted observations to the 48 conterminous states of the US (7.8
million km?) to match the spatial extent of our predictor variables. In
addition to excluding short- and long-distance migratory birds, as
previously noted, we further excluded species associated with habitats
that are underrepresented by BBS route locations (Bart et al., 2005),
including those with freshwater, coastal, or marine distributions (in-
cluding waterbirds and waders), as well as those which are not ade-
quately surveyed using diurnal line transect methods, such as raptors,
crepuscular species, and rare species (those with < 30 total observa-
tions). These species also are closely tied to particular habitats, such as
water bodies, or can disperse beyond the extent of a BBS buffer, thus we
would not expect temperature to strongly drive their distributions at the
spatial scale of our analysis. Finally, we excluded all hybrid species and
observations that were not identified to species-level by observers. We
adopted the BBS classifications of migration habit and breeding habitat
groups (available at https://www.mbr-pwrc.usgs.gov/bbs/guild/
guildlst.html), in some cases supplemented by information from Au-
dubon's online Guide to North American Birds (available at https://
www.audubon.org/bird-guide), to inform these exclusions.

BBS routes have been surveyed since 1966, but to match the tem-
poral resolution of our remotely sensed data, we further restricted bird
observations to those collected between 2013-2017 (BBS data for 2018
were not yet available). We used BBS routes as our unit of analysis and
tabulated resident species richness at each route as the total number of
unique species observed on the route during this time period. In total,
we analyzed 91,582 observations of 108 resident species along 2743
BBS routes.

We assigned each of the 108 resident species to a size class, dis-
tinguishing ‘small-’ and ‘large-bodied’ birds by following the approach
of distinguishing ‘small-’ and ‘large-ranged’ bird species in the ecolo-
gical trait database EltonTraits (Wilman et al., 2014). We first used
body mass information from Dunning (2008) for all 332 breeding
species in the BBS (after excluding freshwater, marine, coastal, raptor,
crepuscular, and hybrid species) to calculate an overall median body
mass (23.45g; range = 2.64-5791.37 g; SD = 362.98g). All species
below and above the median body mass were assigned as small-bodied
and large-bodied, respectively, resulting in 166 small-bodied species
and 166 large-bodied species. We removed from further consideration
any species that was not among our focal set of 108 resident species,
resulting in 34 small-bodied resident species and 74 large-bodied re-
sident species (Table S1). We then calculated small-bodied and large-
bodied species richness at each BBS route by tabulating the number of
small-bodied and large-bodied resident species.

We also assigned each of the 108 resident species to a climate
sensitivity class, distinguishing ‘climate-stable’ and ‘climate-threatened’
species according to the classification provided by Langham et al.
(2015). The climate sensitivity classification is based on the degree to
which a species' current geographic distribution matches its projected
geographic distribution under climate change. Those species that are
predicted to have at least 50% or more of their current and future
ranges overlapping are assigned climate-stable, while species with <
50% predicted overlap are considered climate-threatened. This resulted
in 65 climate-stable resident species and 43 climate-threatened resident
species (Table S1).
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2.3. Statistical analysis

To quantify the relationship between each of our environmental
predictors and winter bird richness, we fit a series of linear models
containing all combinations of our environmental variables as pre-
dictors and winter bird richness as the response variable. We also in-
cluded squared terms for relative temperature and elevation because
bird species richness sometimes shows non-linear relationships with
these variables, with richness peaking at intermediate temperatures and
at mid-elevations (McCain, 2009). We separately fit models for each of
our five groups of species: all resident species, small-bodied resident
species, large-bodied resident species, climate-stable resident species,
and climate-threatened resident species. This resulted in a total of 512
models considered for each group (2560 models total). Prior to fitting
models, we assessed collinearity of our predictors by calculating
Spearman's correlation coefficients between all pairwise predictors (Fig.
S2). The highest correlation between any two predictors was 0.78
(between terrain ruggedness and thermal heterogeneity). All other
pairwise correlations were generally low (mean |correlation| = 0.23),
so we retained all predictors in our model set. Furthermore, as a sec-
ondary measure to ensure that predictors in models were not collinear,
we calculated variance inflation factors for each predictor in fitted
models.

The full model for each species group therefore included a total of
nine predictor variables along with an intercept (Table 1). For each
species group, we ranked models based on the Bayesian Information
Criterion (BIC), which penalizes over-parameterized models (Table 2),
and centered and standardized all predictors to enable unbiased com-
parisons of coefficients. We assessed the total explanatory power of the
models by calculating their adjusted R, and assessed the contribution
of each predictor in predicting bird richness for each group by plotting
their effect sizes with standard errors. To further assess relative variable
importance of our predictors, we used hierarchical partitioning to
evaluate the independent, joint, and total contributions of each pre-
dictor to overall explained deviance (Chevan and Sutherland, 1991).
We assessed potential biases arising from spatial autocorrelation of the
BBS routes by calculating Moran's I and analyzing model residuals in
correlograms using 500 permutations. We performed all statistical
analyses in R version 3.5.1, using the ‘hier.part’ (Walsh and Mac Nally,
2013) and ‘ncf (Bjornstad, 2019) packages to perform hierarchical
portioning and calculate Moran's I, respectively.

3. Results
3.1. TIRS-derived relative temperature and thermal heterogeneity

Our TIRS-derived map of relative temperature showed strong gra-
dients across the conterminous US (Fig. 1a). As expected, regions at

higher latitudes and elevations were generally colder, yet we were also

Table 1
Variables used in linear models to predict winter bird species richness.

Environmental variable  Data source Temporal Spatial resolution
resolution

Relative temperature Landsat 8 TIRS 16-day 100 m, downscaled
Band 10 to 30m

Relative temperaure? Landsat 8 TIRS 16-day 100 m, downscaled
Band 10 to 30 m

Thermal heterogeneity ~ Landsat 8 TIRS 16-day 100 m, downscaled
Band 10 to 30m

Terrain ruggedness SRTMGL1 V003  Static 30m

Mean elevation SRTMGL1 V003  Static 30m

Mean elevation® SRTMGL1 V003  Static 30m

Proportion forest NLCD 2011 Static 30m

Proportion shrubland NLCD 2011 Static 30m

Proportion grassland NLCD 2011 Static 30m
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Table 2

Summary of similarly-ranked models (ABIC < 4) predicting winter bird richness for five different species groups, including coefficient values for all environmental variables and model fit and weight statistics

(abbreviations: Int = Intercept; df = degrees of freedom; logLik

log likelihood; Wt = weight).

Wt Rj

BIC Delta

df  logLik

Therm. heter.  Prop forest  Prop grass  Prop shrub

Rel. temp?

Mean elev  Mean elev>  Terrain rugged.  Rel. temp

Int

Model rank

Species group

0.38
0.38
0.38
0.38

0.47
0.37
0.08
0.08

0.00

14281.0
14281.4
14284.4
14284.6

—-7112.8
—7109.1
—7106.6
—-7110.6

7
8
9
8

0.55
0.49
0.39
0.46

1.37
1.33
1.18
1.24

0.32
0.31
0.31
0.32

1.33
1.36
1.39
1.36

—-1.52
—1.44
—-1.49
-1.57

11.08
11.09
11.09
11.08

Resident
Resident
Resident
Resident

0.46
3.41

-0.20
-0.20

0.27
0.25

3.60

0.50

—4692.5 9464.1 0.00 1.00

10

-0.12

0.39

0.71

0.23 0.32 -0.13

0.17

-1.12

2.98

Small-bodied

0.28
0.28

0.88

0.12

0.00
3.93

12619.3
12623.2

—6285.9

—6283.9

6
7

0.53
0.53

0.43
0.44

1.02
1.03

—0.66
—0.54

7.94
8.03

Large-bodied
Large-bodied

-0.09

0.58
0.58
0.58

0.64
0.23
0.14

0.00
2.05

12769.9
12771.9
12773.0

—6365.2
—6362.2
-6362.7

5
6
6

0.82
0.83
0.69

1.63
1.64
1.67

-2.07
—2.06
-2.10

8.47
8.37
8.47

Climate-stable
Climate-stable
Climate-stable

0.10

2
3

3.08

0.17

0.40
0.40
0.39

0.58
0.26
0.17

0.00

10157.9
10159.5
10160.4

—5047.3
—5048.1
—5052.5

8
8
7

-0.11

0.54
0.61
0.58

0.50
0.50
0.52

0.22

—-0.28
-0.32
-0.29

0.60
0.50
0.56

2.71
2.72
2.70

1
2
3

Climate-threatened
Climate-threatened

1.60
2.49

0.12

0.21
0.22

Climate-threatened
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able to capture fine-scale and localized thermal dynamics. For example,
warmer and cooler areas of the Great Plains were apparent in Iowa
(Fig. 1c), temperature gradients were well-captured along the slopes of
the Rocky mountains (Fig. 1d) and in the Santa Catalina Mountains
near Tucson (Fig. 1e), and individual crop fields with varying thermal
environments were delineated in the Central Valley of California
(Fig. 1f).

Thermal heterogeneity derived from TIRS also showed strong pat-
terns across the conterminous US (Fig. 1b). Thermal heterogeneity was
generally lower in less topographically complex regions, such as the
Great Plains (Fig. 1g), and highest in mountainous regions, such as the
Rocky Mountains (Fig. 1h). In addition to these broad-scale patterns,
our approach captured thermal heterogeneity around city blocks in
urban areas (e.g., in Tucson, Arizona; Fig. 1i) and at the edges of fields
(e.g., in croplands in the Central Valley outside Fresno, California;
Fig. 1j).

We found a moderate positive correlation (r = 0.34) between re-
lative temperature and thermal heterogeneity across the study region
(Fig. S2), with strongest deviations at mid-high relative temperatures.
For example, both relative temperature and thermal heterogeneity were
high throughout much of Arizona and New Mexico (Fig. 1a and b), but
in the adjacent state of Texas, thermal heterogeneity was fairly low
while relative temperature remained high (Fig. 1b). For both tem-
perature variables, the presence of clouds in winter generally affected
the midwestern and northeastern regions most (indicated by small data
gaps in black in Fig. 1a and b), as well as areas on select mountain
peaks, but utilizing six years of data enabled the robust calculation of
our metrics for the vast majority of the conterminous US (Fig. S1).

3.2. Predicting winter bird species richness

The top-ranked model predicting overall winter bird richness in-
cluded five predictors (relative temperature, relative temperature?
thermal heterogeneity, mean elevation, and proportion forest cover)
and explained 37.3% of the variance (Table 2). Thermal heterogeneity
had the strongest positive influence on winter bird richness according
to its effect size, followed by relative temperature (Fig. 2). A significant
positive relationship between winter bird richness and the squared term
of relative temperature indicated that richness increases exponentially
with relative temperature. Among our control predictors, proportion of
forest cover surrounding BBS routes had a weak but significant positive
influence on winter bird richness. Mean elevation had a strong negative
influence on winter bird richness. Terrain ruggedness and proportion of
grassland were not included in the top-ranked model, but had a sig-
nificant weak-positive and weak-negative influence on winter bird
richness in similarly ranked models, respectively (Fig. S3).

Hierarchical partitioning analysis, which we used to determine re-
lative variable importance and the independent versus joint contribu-
tions of each predictor towards the variance explained by the model,
indicated that relative temperature had the greatest independent effect
on predicted winter bird richness patterns, followed by mean elevation
and thermal heterogeneity, though thermal heterogeneity had a larger
total contribution than mean elevation (Fig. 3). In general, most of the
contributions were independent of the other predictors considered
(Fig. 3).

Relative temperature, thermal heterogeneity, and mean elevation
were also always included in the top-ranked models for small-bodied,
large-bodied, climate-stable, and climate-threatened species (Fig. 2).
The top-ranked models for small-bodied and large-bodied species
richness explained 49.2% and 27.3% of the variance in richness pat-
terns, respectively, while the top-ranked models for climate-stable and
climate-threatened species explained 57.3% and 38.9%, respectively
(Table 2). For small-bodied and climate-threatened species, thermal
heterogeneity had a stronger positive effect on richness than relative
temperature, consistent with our predictions. The opposite was true for
large-bodied and climate-threatened richness patterns, such that
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Fig. 2. Standardized effects sizes (points) with 95% confidence intervals (lines) for predictor variables in the top-ranked models of winter bird richness for all resident
species and four subset groups (small-bodied, large-bodied, climate-stable, and climate-threatened species). Note that not all predictor variables are included in the

top-ranked model for each species group.

relative temperature had the strongest positive effect on richness of any
predictor considered (Fig. 2). Mean elevation was a strong negative
predictor in top-ranked models for all species groups except climate-
threatened species, which showed positive relationships with mean
elevation (Fig. 2). Proportion of forest and grassland cover showed
positive and weak-negative relationships, respectively, with small-
bodied and climate-threatened species (Fig. 2). Proportion of shrubland
cover was never included in the top-ranked model for any species
group, and terrain ruggedness was only included as a significant pre-
dictor of small-bodied species richness with a weak-positive influence
(Fig. 2).

Hierarchical partitioning indicated that relative temperature had
the greatest total and independent effect on bird richness patterns of
large-bodied and climate-stable species (Fig. 3). Thermal heterogeneity
had the greatest total and independent effect on small-bodied species,
which were influenced to a slightly lesser degree by relative tempera-
ture, proportion of forest cover, mean elevation, and terrain ruggedness
(Fig. 3). Relative temperature, thermal heterogeneity, and mean ele-
vation had similar total and independent effects on richness patterns of
climate-threatened species (Fig. 3).

Of the 512 models we tested for predicting bird richness for each of
the five species groups, between two and four models had ABIC values
within four of the top-ranked model of each, indicating similar levels of
support (Table 2). In each case, similarly ranked models based on BIC
explained similar amounts of variance as the top-ranked model (max-
imum difference in deviance explained = 0.03%; Table 2). Predictors in
similarly ranked models had effect sizes with similar magnitudes and
directions as top-ranked models (Figs. 2, S3). Furthermore, the

magnitudes of the independent and joint contributions of predictors in
these models were largely consistent with those of the top-ranked
model for each species group (Figs. 3, S4). Variance inflation factors
(VIFs) for each term in top-ranked models for all species groups
were < 5 (mean VIF = 1.85; Table S3), indicating minimal collinearity
of factors included in top-ranked models (O'Brien, 2007). Correlograms
of model residuals of total winter bird richness analyses indicated that
richness among BBS routes exhibited only a small degree of spatial
autocorrelation, and therefore that results were not strongly de-
termined by their spatial configuration (Fig. S5).

Our BBS-based results were also largely consistent with those that
we obtained when analyzing the CBC dataset (see Supplementary
Material), which included a total of 213 winter species, including short-
distance migrants and winter visitors not captured by the BBS. Relative
temperature and thermal heterogeneity were again among the top
predictors for all winter species, small-bodied species, and climate-
stable species. Consistent with our predictions, and with the BBS-based
results, thermal heterogeneity had a stronger influence on small-bodied
species than on large-bodied species (Fig. S9). Similarly, richness of
climate-threatened species was more strongly governed by thermal
heterogeneity than relative temperature, while richness of climate-
stable species was more influenced by relative temperature (Fig. S9).
Overall, the effects of relative temperature and thermal heterogeneity
for these species groups were consistent both in terms of direction and
magnitude when comparing CBC- and BBS-based results. Results from
the hierarchical partitioning analysis were also qualitatively similar for
all species groups (Fig. S10), with the exception of small-bodied species,
where relative temperature had a greater independent contribution
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Fig. 3. Results of hierarchical partitioning analysis showing the independent, joint, and total contributions of predictor variables included in the top-ranked models
of winter bird richness for all resident species and four subset groups (small-bodied, large-bodied, climate-stable, and climate-threatened species) towards the total
variance explained by each model. Note that not all predictor variables are included in the top-ranked model for each species group.

than thermal heterogeneity in the CBC-based results, opposite from the
BBS-based results.

3.3. Spatial patterns in predicted bird richness across species groups

Mapping the predicted richness values resulting from the top-ranked
model for the five species groups showed spatial patterns that largely
mirrored observed richness patterns for each group from the BBS data
(Figs. 4, S6). Deviations in predicted from observed richness for each

Observed richness Predicted richness

Resident species

0 500 1,000 Kilometers
|

species group were largely random with respect to geographic location.
Some underpredictions occurred along the west coast and throughout
the southwestern US, and some overpredictions occurred in isolated
regions of the western US and in Florida for all resident, large-bodied,
and climate-stable species. We observed smaller deviations for small-
bodied and climate-threatened species, which showed minor under-
prediction in California and the southwest and minor overprediction in
the Appalachian Mountains. Predicted richness patterns of large-bodied
and climate-stable species were most reflective of total resident species

Richness difference

No. species

No. species

Fig. 4. Maps of observed richness (first column), predicted richness (second column), and richness difference (observed minus predicted; third column) for winter
resident bird species across 2743 Breeding Bird Survey (BBS) routes in the conterminous US based on the top-ranked model. The left color ramp reflects observed and
predicted richness values, while the right color ramp reflects richness differences from observed, such that bluer tones are under-predictions and redder tones are
over-predictions. See Fig. S6 for analogous maps for small-bodied, large-bodied, climate-stable, and climate-threatened species. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of this article.)
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richness patterns during winter, while predicted climate-threatened
species richness showed patterns that most strongly contrasted with
total resident species richness.

4. Discussion

4.1. Predictive performance of relative temperature and thermal
heterogeneity in explaining bird richness patterns

Our remotely-sensed measurements of the thermal environment
representing relative temperature and thermal heterogeneity during
winter were the two strongest predictors of total, small-bodied, large-
bodied, and climate-stable winter bird richness patterns across the
conterminous US. Both predictors had significant positive effects on
bird richness when controlling for environmental factors related to
elevation, topography, and land cover. Relative temperature explained
more variance than any other predictor in our models for resident
species, large-bodied species, and climate-stable species, confirming its
role as a dominant factor predicting winter bird richness. These results
linking fine-scale relative temperature gradients with winter bird
richness support earlier, coarser-scale assessments showing tight asso-
ciations between climatic factors and bird richness (Rahbek and Graves,
2001).

Our results also point to the important role of thermal heterogeneity
in driving winter bird richness patterns, particularly of small-bodied
and climate-threatened species. Inter-annual temperature variability
can exert strong influence on species’ range sizes (Chan et al., 2016),
and regions of high temperature seasonality can filter out species that
are not adapted to cope with wide temperature fluctuations (Janzen,
1967; Srinivasan et al., 2018). Yet thermal heterogeneity can act to
bolster species richness by increasing the number of niches available
and by supporting species with divergent adaptations to the thermal
environment (Letten et al., 2013). Furthermore, regions of high thermal
heterogeneity within a given season can buffer against exposure to
temperature extremes (Scheffers et al., 2013), which is important for
species with poorer thermoregulatory capacity or ranges more tightly
governed by climatic factors.

Indeed, the effect of temperature variability on species richness
patterns depends on the spatial and temporal scale considered, in some
cases tipping the balance towards higher rates of stochastic extinctions
thereby reducing species richness, while in others promoting speciation
rates and stabilizing competition, thereby increasing species richness
(Shurin et al., 2010). We found that thermal heterogeneity acts to in-
crease bird species richness at continental scales, at least during winter,
potentially by creating thermal refugia that can support a greater
number of species. We further provide evidence that spatial patterns in
thermal heterogeneity more strongly predict richness patterns of small-
bodied and climate-threatened species, two species groups that are
thought to be more sensitive to cold temperatures or largely governed
by climatic factors. Large-bodied and climate-stable species may have
physiologies or other adaptations that enable them to occupy wider
temperature gradients (Langham et al., 2015; Porter and Kearney,
2009). Consequently, such species may not be governed as strongly by
thermal conditions (Srinivasan et al., 2018), lessening their need to
exploit thermal heterogeneity during winter. Our results favor in-
creased consideration of thermal heterogeneity to more accurately
predict broad-scale species richness patterns, particularly of species
sensitive to climate change.

4.2. Application of remotely-sensed thermal data for biodiversity
conservation

More broadly, our analysis illustrates the promise of thermal data
captured by satellite imagery to generate fine-scale thermal metrics
with great utility for biodiversity conservation. Moderate-resolution
thermal data are readily available across the globe. Capitalizing on the
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rapid growth of species locality information from standardized surveys
like the BBS, citizen science databases, and museum specimen collec-
tions (La Sorte et al., 2018), future work could evaluate whether the
patterns we observe for wintering birds in the conterminous US are
representative of patterns globally or in other biogeographic realms,
and in other seasons when biodiversity patterns can show stark differ-
ences owing to migration (Elsen et al., 2018b; La Sorte et al., 2017).
Thermal data in summer, for example, may reveal thermal refugia for
birds during heat waves.

Our predictive maps of winter bird richness differ considerably from
maps of total bird richness derived from static species range maps
(Jenkins et al., 2015), making our maps valuable when identifying
priority areas for conserving winter birds. Conservation priorities based
on temperature gradients and thermal heterogeneity represent coarse-
filter strategies that aim to protect features of landscapes that promote
biodiversity (Tingley et al., 2014), which have advantages in conser-
ving biodiversity under climate change (Elsen et al., 2018a; Lawler
et al., 2015). Based on our analysis, such priority regions occur in Ca-
lifornia, coastal Florida, Texas, and throughout much of the southeast
and Appalachian Mountains given their high levels of overall winter
bird richness (Figs. 4, S6). For climate-threatened species, priorities
include the Great Basin, Intermountain West, Pacific Northwest, and
the Great Lakes region. Many of these same geographic regions are also
priority regions for terrestrial vertebrates, freshwater fish, and trees,
and correspond with areas where protection is largely lacking (Jenkins
et al., 2015). Our results add support to calls for increased conservation
attention in these threatened regions.

Another important consideration is the source of thermal hetero-
geneity. While terrain ruggedness can drive thermal heterogeneity,
anthropogenic activities such as suburban and agricultural expansion
can also significantly alter the thermal environment. For example, in
the tropics, agricultural lands are 7.6 C warmer than primary forest on
average (Senior et al., 2017), and temperate forests with greater tree
densities have warmer and less variable microclimates than disturbed
forests (Latimer and Zuckerberg, 2016). While agricultural lands are
important for many bird species during winter (Elsen et al., 2017;
Rosenblatt and Bonter, 2018), habitat conversion can negatively impact
birds during breeding when they have different habitat requirements
(Elsen et al., 2018b; Holmes, 2007). Thus, the positive influence of
thermal heterogeneity on bird richness we observed during winter may
be attenuated during breeding. Future work examining the interplay of
thermal heterogeneity with land cover variables would help further
inform the mechanism by which thermal heterogeneity influences
species richness patterns.

4.3. Caveats and considerations

Though many factors limit species ranges and determine biodi-
versity patterns (Sexton et al., 2009), advances in remotely-sensed data
are rapidly increasing our ability to investigate their roles directly
(Estes et al., 2018; Radeloff et al., 2019). We focused here on the
thermal environment, complementing other studies showing that re-
motely-sensed data, such as metrics of productivity (Coops et al., 2009;
Hobi et al., 2017), cloud cover (Wilson and Jetz, 2016), and texture
measures as proxies of habitat structure (Culbert et al., 2010; Tuanmu
and Jetz, 2015), are useful in predicting biodiversity patterns. While
incorporating such variables into models would likely increase pre-
dictive performance, the resulting model complexity potentially limits
interpretability and the ability to directly test ecological hypotheses
(Merow et al., 2014). Consequently, we opted to limit our input vari-
ables to focus on testing the roles of relative temperature and thermal
heterogeneity in explaining species richness patterns. In doing so, we
have demonstrated the profound influence of both variables on winter
bird richness across the conterminous US, while providing an analytical
framework that can readily be applied to other taxonomic groups and
other regions.
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Secondly, the TIRS data represent surface-level temperatures, which
may not precisely reflect the conditions experienced by birds, especially
in forests. In winter, closed canopy forests can provide thermal buf-
fering of cold temperatures by filtering radiation exchange (Norris
et al., 2011) and altering microclimatic conditions in the understory
(Latimer and Zuckerberg, 2016). While sub-canopy temperatures are
correlated with interpolated temperatures from weather stations, the
degree of correlation is influenced by topography and landscape fea-
tures such as the amount of urban area and forest edge (Latimer and
Zuckerberg, 2016). Methods of combining air temperature, digital
elevation model, and light detection-and-ranging (LiDAR) data have
been proposed to more accurately capture microclimatic variability and
thermal refugia (Lenoir et al., 2016), but such data are at present un-
available over broad spatial scales. Given our continental scale analysis
of thermal data at the BBS route level (i.e., averaged within a 19.7 km
buffer), we suggest that TIRS data provide the best broadly available
approximation of relative temperature and thermal heterogeneity.

Finally, our analysis took advantage of data from the most extensive
bird monitoring program in the US, the Breeding Bird Survey (Sauer
et al., 2017), providing us with nearly 100,000 observations with which
to model bird richness patterns. However, because these surveys are
conducted during the breeding season, they do not directly capture
winter bird communities, and our analysis excludes species that a)
undergo short-distance migrations while still wintering in the US, and
b) breed further north, but overwinter in the US. Our approach of
considering only resident species that have stable annual distributions
is hence conservative given the nature of the data, but we recognize
that true winter bird richness patterns likely differ to some degree.
However, we have no reason to believe that focusing on these species
qualitatively changed our results, given the limited number of species
that were potentially omitted. Indeed, analyzing data from the CBC,
which contains short-distance migrants and winter visitors in addition
to permanent residents, yielded qualitatively similar results (Figs. S9
and S10). This independent validation gives us increased confidence in
our conclusions that relative temperature and thermal heterogeneity
are important predictors of winter bird richness patterns.

5. Conclusion

We show that temperature gradients and fine-scale thermal het-
erogeneity strongly drive winter bird richness patterns, especially for
species with greater sensitivities to the thermal environment. Our
findings highlight the exciting potential of TIRS data to capture both
gradients in relative temperature and intra-seasonal thermal hetero-
geneity that can be used to predict species richness patterns over broad
scales. Our results have important implications for conservation plan-
ning under global change and underscore the importance of protecting
regions with high thermal heterogeneity. The global availability of TIRS
data enables future studies to investigate the predictive performance of
the thermal environment on other taxonomic groups and in different
spatial and temporal contexts, and to understand how the thermal en-
vironment interacts with other abiotic and biotic factors to govern
species richness. Such studies are needed to bolster the generality of our
findings and to better understand when and where the thermal en-
vironment plays pivotal roles in driving species richness patterns.
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