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Spatially-explicit tree species distribution maps are increasingly valuable to forest managers and researchers in
light of the effects of climate change and invasive pests on forest resources. Traditional forest classifications are
limited to broad classes of forest types with variable accuracy. Advanced remote sensing techniques, such as
spectral unmixing and object-based image analysis, offer novel forest mapping approaches by quantifying pro-
portional species composition at the pixel level and utilizing ancillary environmental data for forest classifica-
tions. This is particularly useful in the Northeastern region of the United States where species composition is
often mixed.
Here we employed a hierarchical forest mapping approach using spectral unmixing of multi-temporal Landsat
imagery to quantify percent basal area for ten common tree species/genera across northern New York and Ver-
mont. Basal areamapswere then refinedusing an object-based ruleset to produce a thematic forest classification.
Validationwith 50 field inventory plots covering a range of species compositions indicated that the quality of per-
cent basal areamapping largely reflected the number of “pure” (N80% BA) endmember plots available for calibra-
tion, with more common species mapped at a higher accuracy (i.e. Acer saccharum, adj. r2 = 0.44, compared to
Populus sp., adj. r2 = 0.24). The resulting thematic forest classification mapped 15 forest classes (nine species/
genus level and six common species assemblages) with overall accuracy = 42%, KHAT = 33%, fuzzy accuracy
= 86% at the pixel level, and 38%, KHAT = 29%, fuzzy accuracy = 84% at the object level.
Using the validation plots to compare existing forest classification products, this hierarchical approach provided
more class detail (11 represented classes) and higher accuracy than the National Forest TypeMap (six represent-
ed classes, overall accuracy 18%, fuzzy accuracy 70%), LANDFIRE (five represented classes, overall accuracy 28%,
fuzzy accuracy 80%) and National Land Cover Database (three represented classes, overall accuracy = 56%).
These results show thatmore detailed and accurate forestmapping is possible using a combination ofmulti-tem-
poral imagery, spectral unmixing, and rule-based classification techniques. Improved large-scale forest mapping
has important implications for natural resource management and other modeling applications.
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1. Introduction

Developing cost-effectivemethods to accurately classify forest cover
is essential to inform sustainable forest management at local, regional,
and national levels. These products are increasingly valuable in light of
the anticipated effects of climate change and invasive pests on forest re-
sources.Warming temperatures and changing precipitation regimes are
expected to cause shifts in tree species distributions (Hamann and
Wang, 2006; Iverson and Prasad, 2001; Tang et al., 2012) and increases
in the duration and severity of pest/pathogen outbreaks (Dale et al.,
2001; Dukes et al., 2009). Yet our ability to direct management actions
is limited by the coarse detail and relatively low accuracy of existing
large-scale forest cover maps.
.

Existing forest cover maps include field inventory and remote sens-
ing based products, including those generated through the Forest Inven-
tory and Analysis program (FIA; http://www.fia.fs.fed.us/), the National
Land Cover Database (NLCD; http://www.mrlc.gov/) and LANDFIRE
Existing Vegetation Type (LANDFIRE EVT; http://www.landfire.gov/).
More recently, the United States Forest Service (USFS) has also used
FIA data, multi-temporal Moderate Resolution Spectroradiometer
(MODIS) imagery, vegetation indices, and other ancillary environmen-
tal data to produce the National Forest Type map (National Forest
Type Map, http://data.fs.usda.gov/geodata/rastergateway/forest_type/
index.php). The LANDFIRE and NLCD programs provide national forest
type maps at a 30 m × 30 m spatial resolution, but in coarser forest
type classes than FIA/USFS species-level products.

Several remote sensing studies have successfully mapped species-
level distributions, though largely at highly localized spatial scales
(Carleer and Wolff, 2004; Immitzer et al., 2012; Ke et al., 2010; Martin

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2017.05.006&domain=pdf
http://www.fia.fs.fed.us
http://www.mrlc.gov
http://www.landfire.gov
http://data.fs.usda.gov/geodata/rastergateway/forest_type/index.php
http://data.fs.usda.gov/geodata/rastergateway/forest_type/index.php
http://dx.doi.org/10.1016/j.rse.2017.05.006
mailto:dgudexcr@uvm.edu
Journal logo
http://dx.doi.org/10.1016/j.rse.2017.05.006
Unlabelled image
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


194 D. Gudex-Cross et al. / Remote Sensing of Environment 196 (2017) 193–204
et al., 1998; Plourde et al., 2007). These studies typically rely on data-in-
tensive hyperspectral and/or high spatial resolution imagery (e.g.
Ikonos, QuickBird, WorldView-2, Airborne Visible/Infrared Imaging
Spectrometer – AVIRIS, Light Detection and Ranging – LiDAR), limiting
their applicability to tree species/genus classification across larger
regions.

Wolter et al. (1995), Mickelson et al. (1998), and Hill et al. (2010)
achieved relatively accurate species-type classifications by utilizing
multi-temporal Landsat imagery, demonstrating the usefulness of ac-
quiring multiple image dates that capture phenologically-significant
differences among species (e.g. green-up, senescence, etc.). Dymond
et al. (2002) also found improved deciduous forest type discrimination
when multi-temporal Landsat imagery was supplemented with Nor-
malized Difference Vegetation Index (NDVI) and Tasseled Cap Transfor-
mation (TC) bands, as well as their respective differences among image
dates.

Advanced remote sensing techniques, such as spectral unmixing and
object-based image analysis (OBIA), utilize a wealth of spectral, spatial,
and ancillary environmental data to enable more precise forest cover
mapping (see Pu, 2013 for reviews; Xie et al., 2008). Spectral unmixing
has been shown to outperform traditional pixel-based classifiers by
decomposing (“unmixing”)mixed pixels and assigning component pro-
portions at the subpixel level (Huguenin et al., 1997; Oki et al., 2002).
This is particularly useful in northeastern forests where species com-
position is often heterogeneous. The resulting per-pixel proportions
of each species obtained from the spectral unmixing process also
facilitate the mapping of other forest attributes that are dependent
upon the complexity of species composition common in northeast-
ern forests (e.g. carbon storage, basal area, productivity) (Hall et
al., 1995; Sonnentag et al., 2007; Yan et al., 2015). OBIA techniques
overcome individual pixel constraints by segmenting imagery into
homogenous “objects” upon which classification is then carried
out. This allows for the additional characterization of shape, size,
and texture into classifications and minimizes impacts of canopy
architecture-driven variability in spectral signatures (Chubey et al.,
2006).

While OBIA is often more accurate than pixel-based methods for
mapping forest cover at high spatial resolutions (Agarwal et al., 2013;
Dorren et al., 2003; Oruc et al., 2004), comparative studies indicate
that coupling pixel-based and OBIA techniques can improve the accura-
cy of forest type classifications (Aguirre-Gutiérrez et al., 2012; Wang et
al., 2004). Using Ikonos imagery, Wang et al. (2004) achieved the
highest mangrove classification accuracies when integrating a pixel-
level classification to identify spectrally-distinct classes, then carrying
out an object-based nearest neighbor analysis on spectrally-mixed clas-
ses. Similarly, Aguirre-Gutiérrez et al. (2012) obtained the highest accu-
racy in montane landscapes when merging the best pixel-based and
object-based classes to produce the final thematic land cover
classification.

Here, we test a novel approach to tree species mapping that inte-
gratesmanyof the successful approaches used in these previous studies.
This involves pixel-level spectral unmixing that integratesmulti-tem-
poral Landsat imagery to develop percent basal area coverages for 10
common species. These percent basal area coverages are then incorpo-
rated into an object-based hierarchical ruleset to generate 16 forest
classes (10 species/genera and 6 common assemblages). To evaluate
the utility of this integrated multi-temporal, spectral unmixing
(MTSU) approach,we compare accuracywith existing large-scale forest
mapping products, including LANDFIRE EVT, National Forest Type Map,
and NLCD.

Achieving accurate, species-specific forest classifications is
necessary to fill critical gaps in our knowledge of current tree species
distributions. This integrated approach attempts to maximize the ac-
curacy and detail possible from widely available Landsat imagery,
allowing for improved, widespread mapping of important forest
resources.
2. Methods

2.1. Study area and base imagery

This study was conducted on Landsat Row 29, Path 14, which spans
much of northern New York and Vermont (Fig. 1). Forest composition
across the region is highly heterogeneous with dominant canopy
species including sugar maple (Acer saccharum), red maple (Acer
rubrum), American beech (Fagus grandifolia), eastern hemlock (Tsuga
canadensis), easternwhite pine (Pinus strobus), and yellow birch (Betula
alleghaniensis). Upper elevations are dominated by balsam fir (Abies
balsamea), red spruce (Picea rubens), and birches (Betula spp.) (Morin
and Widmann, 2016; Widmann, 2015).

Seasonal Landsat Operational Land Imager and Thermal Infrared
Sensor (OLI-TIRS) and Enhanced Thematic Mapper Plus (ETM+) im-
ages (USGS level 1 T products) were acquired for targeted, phenologi-
cally-representative dates: full snow cover (winter), green up
(spring), mid-growing season (summer), and peak fall color (fall). Be-
cause cloud cover is a common issue across this mountainous region,
we included the lowest cloud cover image within a two-year buffer
around the representative year (i.e. “2014” candidate images were cho-
sen from 2012 to 2016). Cloud cover was masked, then backfilled via
seamless mosaicking with another image acquired within two weeks
of the base image. Even within these parameters, for this study we
were unable to compile a spring image with sufficiently low cloud
cover and hence excluded this season from further processing.

2.2. Ground-reference data

“Pure” endmember spectra (plots with N80% basal area for a given
species) for spectral unmixing algorithms were obtained from FIA
plots distributed throughout the region, with an additional 20 vari-
able-radius plots (collected with a 10 factor wedge prism) also used to
improve representation of species underrepresented in the FIA data
(Fig. 1). Aggregated to the plot level, this resulted in 54 plots containing
N80% basal area to calibrate the unmixing models for ten common spe-
cies or genera (Table 1).

For model validation, the FIA endmember plots were supplemented
by mixed species composition plots from the Vermont Monitoring Co-
operative (VMC; http://www.uvm.edu/vmc/) for a total of 50 plots cov-
ering a range of species compositions (Table 1). Both programs employ
the same sampling design, with four 1/24 acre subplots (see Bechtold
and Patterson, 2005) and measurement of all stems greater than five
inches diameter at breast height.

Sugarmaple, birches, American beech, red spruce, and redmaple re-
spectively occurred on the most ground-reference plots, while sugar
maple, balsam fir, birches, and eastern hemlock had the highest percent
basal area. It is important to note that percent basal area measurements
did not differentiate between canopy dominant and understory trees,
likely contributing to error in the resulting percent basal areas models
that are based solely on reflectance signatures from the top of the
canopy.

2.3. Preprocessing

Landsat Level 1 T products come with basic radiometric calibration
and topographically corrected georegistration. In-house preprocessing
(Fig. 2) included atmospheric corrections to at-surface reflectance
using a dark-object subtraction technique (Chavez, 1989). We then de-
rived NDVI and TC (Crist and Cicone, 1984) bands for each season, and
calculated seasonal TC differences between summer and fall. These indi-
ces have previously been shown to improve landscape-level forest type
discrimination of multi-temporal Landsat imagery (Dymond et al.,
2002).

Running a principal component analysis (PCA) on forested pixels
only on the resulting 33 band imagery stack as a precursor to the

http://www.uvm.edu/vmc


Fig. 1. The study area, spanning northern New York and Vermont, and distribution of ground-reference plots (Landsat Path 14, Row 29).
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Minimum Noise Fraction (MNF) transform (see Section 2.4 below)
allowed us to minimize autocorrelation among the full component of
input bands. This step removed noise inherent in many of these bands
due to differences in illumination and atmospheric conditions across
different image acquisition dates, and isolated the spectral signal specif-
ic to distinguishing forested pixels.

The final stacked image for spectral unmixing included the first
three PCA bands (accounting for N99% of the spectral variability in the
full 33-band stack). Because these PCA bands were primarily
distinguishing among species composition (see Section 3.1), the final
stacked image also included summer Landsat reflectance bands, NDVI,
Tasseled Cap, and Tasseled Cap difference vegetation index products
(Fig. 2) to capture information about canopy density for percent basal
area modeling.
Table 1
The species composition of ground-reference plots used for development of percent basal
area (%BA) models.

Tree spp./genus No. of pure
endmember plots

Mean %BA
(±SD)

Max %BA No. of plots
w/species

Balsam fir 8 14.3 (27.7) 92.5 14
Red maple 2 6.7 (14.2) 80.5 18
Sugar maple 10 27.7 (36.6) 96.0 27
Birches 6 13.1 (20.4) 80.7 26
American beech 2 6.3 (13.2) 81.8 22
Red spruce 1 5.7 (14.6) 92.0 20
Eastern white pine 11 5.8 (21.4) 100.0 6
Aspens 1 3.3 (13.8) 86.5 5
Oaks 2 3.4 (13.1) 65.0 4
Eastern hemlock 11 9.2 (25.0) 93.1 10
2.4. Spectral unmixing

The spectral unmixing process outlined here largely follows that de-
veloped by Nielsen (2001) and Boardman and Kruse (2011), which has
previously been used to classify tree specieswith hyperspectral imagery
(see Hallett et al., 2010; Plourde et al., 2007). AMNF transformwas first
applied to the final imagery stack (17 bands) for data decorrelation and
spectral noise reduction (Green et al., 1988) (Fig. 2). Endmember pixels
were refined using a Pixel Purity Index to ensure spectral similarity of
MNF bands among geographically distinct sites, with spectral outliers
being excluded from further analysis. The resulting MNF image was
then “unmixed” using aMixture-tunedMatched Filtering (MTMF) algo-
rithm (Boardman, 1998) based on the target endmember spectra (i.e.
tree species signatures). MTMF is a form of spectral mixture analysis
that employs partial linear unmixing to map the abundance or fraction
of target endmember spectra within each pixel (Boardman and Kruse,
2011). The MTMF output consists of a matched filter and infeasibility
score for each pixel, with the former reflecting how well the pixel
matches the target spectra and the latter representing the likelihood
of a false positive.

We considered several approaches to model percent basal area for
input into the object-based classification ruleset based on the MTMF
products. The traditional approach involves identifying thresholds for
matched filter and infeasibility scores to maximize the binary accuracy
of a species' presence/absence. Because we were mapping heteroge-
neous forest cover dominated by mixed species composition, such a bi-
nary classification was ruled out for our purposes. Regression models
have also been used to map species fractional basal area using
hyperspectral imagery (Pontius et al., 2005). This study differed from

Image of Fig. 1


Fig. 2. The Landsat preprocessing and percent basal area modeling workflow.
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these previous single species efforts based on the large number of
ground-reference plots across a range of forest species composition.
The diverse plot network resulted in a variable number of plots where
the target species was completely absent, as well as a suite of possible
matched filter and infeasibility scores derived from the 10 species
unmixing products.

Using linear regression models based only on plots that contained
the species of interest produced more stable regression metrics, but re-
sulted inmany false positives where particular species were absent. We
also tested zero-inflated regression to account for the propensity of zero
basal area plots in the calibration data. Results were generally lower
model fit than the general linear models, with continued over-predic-
tion of zero basal area plots. Further, zero-inflation p-values resulting
from regression estimates were not significant, indicating that the pres-
ence of zero value data was not a significant contributor to overall
model variability.

Our most consistently accurate results came from a stepwise linear
regression model that included all ground-reference plots (including
those where the target species was absent). Model terms were limited
to match filter and infeasibility variables significant at the 0.05 level,
with amaximum variance inflation factor of 10 to avoid autocorrelation
among parameters. We used the minimum Bayesian Information Crite-
rion (Bhat and Kumar, 2010) to select the best fit model. The resulting
regression equation was then applied to the MTMF image via band
math to create a percent basal area raster for each target species/genus.

It is important to note that the resulting fractional basal area prod-
ucts were not intended to be stand-alone products, but instead to be
used as inputs to quantify the relative abundance of species within
each pixel in order to inform classification. These relative abundances
were not aggregated for all species but instead used as independent in-
puts to the object-based hierarchical ruleset (see Section 2.5 below).
2.5. Object-based classification

Percent basal area rasters obtained from the pixel-based spectral
unmixing were then incorporated into an object-based, hierarchical
ruleset classification scheme (Fig. 3). This allowed us to refine the per-
cent basal area products using ancillary environmental data (i.e. digital
elevation data from theNational ElevationDataset available through the
U.S. Geological Survey) and produce classifications on a stand- versus
pixel-level.

Object-based classifications begin with segmentation to aggregate
like pixels into larger image objects. Segmentation settings and input
layer weightings were informed by knowledge of the image resolution,
spatial characteristics of the landscape, and spectral nature of the fea-
ture objects. As is common in object-based classifications, iterations of
various settings were evaluated to confirm selection of final segmenta-
tion settings. We used a multiresolution segmentation algorithm (see
Chubey et al., 2006 for further explanation) based on layer inputs that
highlighted differences in vegetation characteristics across our study
area. This included weighting the first three MNF bands most, followed
by summer and winter NDVI and seasonal TC differences. Given the
moderate spatial resolution of Landsat imagery and heterogeneous na-
ture of forest composition patterns across the landscape, a very low
scale parameter (1) with no shape or compactness weighting was
used for object segmentation. To compare the pixel-level ruleset results
to this object-based approach, a chessboard segmentation with a scale
parameter of 1 and no band weighting was used to create pixel
“objects”.

The ruleset started by differentiating forest from non-forest objects
using thresholds for winter band 3 leveraging snow cover (non-forest
N 0.60), and spring band 4, masking water (non-forest b 0.065). Forest
classes were then assigned based on percent basal area rasters and

Image of Fig. 2


Fig. 3. The object-based image analysis (OBIA) workflow to generate a 16-class thematic forest cover map.

Table 2
Principal components analysis eigenvectors highlight the input bands that account for the
most spectral variability among forested pixels.

Input band PCA band Eigenvector

Fall band 5 (mid-IR) 1 0.233
Fall band 2 (green) 1 0.207
Fall band 4 (NIR) 2 0.295
Fall NDVI 2 0.271
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elevational constraints outlined by Burns and Honkala (1990) (Fig. 3)
following a rule-based hierarchy. A species/genus class was assigned if
the object contained N40% basal area of that species or genus and did
not exceed the specified elevation threshold (if there was one). Since
rare species are spottier across the landscape and more likely to be
smoothed out when averaged within image objects, forest type assign-
ment in the hierarchical ruleset progressed from the least to most com-
mon species to maximize representation of rare species in the final
thematic classification.

To capture regionally-common species assemblages where no spe-
cies was N40% basal area, we also classified six common forest assem-
blages by summing the percent basal area values for their respective
component species (Fig. 3). The final thematic forest classification of
16 possible forest types was then exported as a 30-m by 30-m raster
product.

2.6. Accuracy assessment

Inventory data for the FIA and VMC plots described above (see
Section 2.2) were used to assign a forest class according to the same
rule thresholds applied to the imagery. A confusionmatrix of actual ver-
sus predicted forest classes was created to examine overall, kappa,
User's, and Producer's accuracies. We also determined fuzzy accuracy
by allowing misclassification between common species/species assem-
blages. For example, we considered sugarmaple pixels that were classi-
fied as northern hardwoods to be “correct” at the fuzzy level.

We similarly calculated accuracy for three existing forest mapping
products: the 2011 LANDFIRE EVT classification; the National Forest
Type Map classification; and the 2011 NLCD classification. Only the
LANDFIRE and National Forest Type Map classifications could be com-
pared at the species-type level, with accuracy being determined follow-
ing the same process outlined above with field plots assigned to match
their respective classes. For the NLCD product, we classified the valida-
tion data as deciduous (N75% deciduous species), evergreen (N75% ev-
ergreen species), or mixed forest (a plot was considered mixed when
both deciduous and evergreen species were present but neither
exceeded 75% of the plot basal area).
3. Results and discussion

3.1. Spectral decomposition

Our approach included the aggregation of a variety of image dates
and vegetation index products in order to maximize the spectral infor-
mation available to differentiate physiologically similar species. Eigen-
vectors from spectral decomposition were used to identify which
bands accounted for the most variability among forested pixels. From
the full 33 band multi-temporal stack, the largest eigenvectors came
from the fall image (Table 2). It is important to keep in mind that this
PCA was run on forested pixels only in order to isolate the potential
spectral signal specific to differentiation among forest types (not for-
est/non-forest). The fall image was timed at the peak of physiological
differentiation among species for our region, providing key spectral in-
formation to help separate otherwise spectrally similar species. Other
studies have also cited the importance of using shoulder seasons with
unique phenological information to assist in species classification
(Dymond et al., 2002; Hill et al., 2010).

3.2. Percent basal area modeling

MTMF models of percent basal area resulted in significant but rela-
tively weak (adj. r2 = 0.24; RMSE = 0.04, Populus sp.) to moderate re-
lationships (adj. r2 = 0,59; RMSE = 0.06, American beech). These
relatively low model fits likely result from several sources of known
error. The sensor primarily records the spectral reflectance from the
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canopy surface, with a mix of canopy dominant trees that may differ
from understory composition included in ground-reference inventories.
Further, percent basal area is based on main trunk diameter at breast
height with no accounting for variability in crown size or geometry
among species. This is reflected in lower fit statistics for species that
are more common in the understory of Northeastern forests (e.g. east-
ern hemlock), or with relatively small crown geometry relative to com-
mon co-occurring species.

The lack of fit is likely also driven by the preponderance of “pure”
species plots included in the validation dataset. This resulted in plots
with extreme high and extreme low (zero occurrence) values of each
target species, levels where regression models are typically weakest.
Species/genera with the lowest percent basal area fit were those with
the fewest endmember calibration plots and lowest general abundance
across the study area (per FIA forest demographic reports). For these
target species, percent basal area was typically under-predicted (Table
3). The most accurate percent basal area models were associated with
the dominant species in our region (e.g. American beech).

These results are similar other species mapping efforts. Savage et al.
(2015) used a zero-inflated regressionmodel, based on a two-step pro-
cess, to first predict the presence or absence of the target species and
then species composition only where the target species was present.
They modeled five different conifer species in heterogeneous forests of
northwesternMontana using Landsat TMandOLI imagery, reporting in-
dependent accuracy assessment RMSE from 0.11 to 0.23 (no r2 values
were reported). These errors are slightly higher than the range of
RMSE values reported for our ten target species (0.04 to 0.16).

Moisen et al. (2006) compared generalized additive regression
modeling, classification and regression tree (CART) techniques, and sto-
chastic gradient boosting for modeling live basal area from multi-tem-
poral Landsat imagery for thirteen tree species in Utah. Basal area
prediction results for all modeling techniques were poor for most spe-
cies (r2 b 0.5 and RMS errors N 0.8). While the general approach
employed by Moisen et al. (2006) is similar to that described here
(multi-temporal Landsat imagery), our range ofmodel fit is higher, indi-
cating that the additional image processing techniques and spectral
unmixing approach employed here may improve abundance mapping
using Landsat imagery.

Our percent basal area modeling results also compare favorably to
those obtained in other studies using MTMF techniques. Hyperspectral
imagery, with its wealth of narrow reflectance bands, is well suited to
spectral unmixing and species abundance mapping. Hyperspectral in-
struments have reported comparable accuracy to that reported here
for eastern hemlock abundance in the Catskills region (r2 = 0.65;
RMSE 0.12, Pontius et al. (2005)). Plourde et al. (2007) used spectral
unmixing to model percent sugar maple and American beech in New
Hampshire using both hyperspectral AVIRIS imagery as well as modifi-
cations of the hyperspectral imagery to match broadband sensors. They
found weak relationships between field-measured and predicted per-
cent basal area based on the broadband imagery, but results similar to
those reported here for spectral unmixing of the full hyperspectral
Table 3
Percent basal area model fits derived from spectral unmixing.

Tree spp./genus r2 Adj. r2 Mean %BA RMSE PRESS RMSE

Balsam fir 0.34 0.32 0.15 0.11 0.12
Red maple 0.47 0.46 0.08 0.06 0.06
Sugar maple 0.46 0.44 0.28 0.16 0.17
Birches (Betula spp.) 0.32 0.30 0.13 0.08 0.09
American beech 0.60 0.59 0.07 0.06 0.07
Red spruce 0.52 0.51 0.07 0.06 0.06
Eastern white pine 0.3 0.29 0.1 0.1 0.1
Aspens (Populus spp.) 0.25 0.24 0.04 0.04 0.04
Oaks (Quercus spp.) 0.49 0.48 0.05 0.05 0.05
Eastern hemlock 0.32 0.30 0.11 0.09 0.1
data (r2 = 0.49; RMSE = 0.09 for sugar maple and r2 = 0.36; RMSE
= 0.18 for beech).

These studies collectively underscore that modeling continuous var-
iables, like individual tree species basal area, is a difficult task. Clearly
the spatial resolution of Landsat imagery is limiting for mapping forest
cover at the species level in highly mixed forests. Difficulties associated
with scaling field data to the Landsat pixel level include: overlap in can-
opy dominant species (Hallett et al., 2010; Plourde et al., 2007); incon-
gruities between fieldmeasurements (which include understory stems)
and sensor-derived canopy reflectance (particularly for shade-tolerant
species such as hemlock); and incorrect registration between calibra-
tion field plots and pixel centers. Atmospheric and topographic shadow
impacts on spectra are also particularly troublesome inmountainous re-
gions. Within-species spectral variability due to differences in tree
health can also confound unmixing algorithms (Carter, 1993; Plourde
et al., 2007).

While these errors impact the overall accuracy of themodels, it is in-
teresting to note that themulti-temporal, broadband, spectral unmixing
approach described here reports similar accuracy to hyperspectral ef-
forts (Plourde et al., 2007; Pontius et al., 2005) and improved accuracy
compared to other broadband-based tree species abundance mapping
(Moisen et al., 2006; Plourde et al., 2007; Savage et al., 2015). We attri-
bute the improved performance of our MTSU integrative approach to a
combination of factors: 1) the use of multi-temporal imagery to capture
species-specific spectral characteristics during key phenological times;
2) the inclusion of vegetation indices derived from the multi-temporal
images to isolate species-specific differences in vegetation characteris-
tics across seasons; and 3) the use ofMTMF products frommultiple spe-
cies components to model abundance of the target species. Previous
broadband sensor-based studies have shown the utility of using multi-
ple phenologically-important image dates and vegetation indices
when classifying heterogeneous forest cover at the species-type level
(e.g. Dymond et al., 2002; Hill et al., 2010). Others have highlighted
that the use of multiple endmembers in spectral mixture analysis can
improve assessments of forest structural attributes (Hall et al., 1995;
Roberts et al., 1998).

Our resulting maps of species percent basal area match expected
patterns across northern New York and Vermont (see Burns and
Honkala, 1990 for species-specific descriptions), particularly for the
five most abundant species (Fig. 4). Balsam fir (Fig. 4a) was predicted
throughout the high elevations of both the Green and Adirondack
mountains, in addition to the lowland boreal forest areas of northeast-
ern Vermont. Betula sp. (Fig. 4b) followed a spatial distribution similar
to sugar maple but with greater occurrence at higher elevations. Since
birchesweremodeled at the genus level, this reflects the northern hard-
wood type-driven distribution of yellow birch (Betula alleghaniensis)
and that of paper birches (Betula papyrifera/cordifolia), which are com-
mon constituents of high elevation spruce-fir forests in thenortheastern
USA (Burns and Honkala, 1990; Leak et al., 2014). Sugar maple was pre-
dicted as prevalent throughout much of the region (Fig. 4c), which
matches recent FIA field inventories in both states (Morin and
Widmann, 2016; Widmann, 2015). Its highest estimated percent basal
area densities were along the low to mid elevation slopes of the
Adirondack and Greenmountain ranges, where it is an integral compo-
nent of the northern hardwoods forest type (Leak et al., 2014). Eastern
white pine (Fig. 4d) was largely predicted to be found along the Lake
Champlain valley lowlands of both states, but more prevalent in New
York.

3.3. Thematic forest classification

3.3.1. Comparison of pixel-level and object-based MTSU classification
schemes

Rule-based, OBIA classification schemes are commonly used with
high spatial resolution imagery that exhibits unique shape and texture
features. Due to the relatively coarse pixels of Landsat, we compared



Fig. 4. The spatial distribution of percent basal area derived from spectral unmixing for four common species in northern New York and Vermont.
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the thematic results of the hierarchical ruleset applied to both individu-
al pixels (pixel-level, PL) and image-segmented stand “objects” (object-
level, OL) to determine if image segmentation was necessary to maxi-
mize accuracy of forest classifications. The relative abundance of the
16 forest classes was similar for both the pixel-level (PL) and object-
based (OB)maps. Themost striking differencewas far fewer pixels clas-
sified as species-dominant in the OB map. This result is to be expected
given the averaging of neighboring pixel values to create one common
value for each stand-level object, which effectively washes out single-
species dominant pixels. Spatial patterns for the PL and OB maps were
indiscernible at the regional level. However, a localized, side-by-side
comparison of both products revealed the PL map's finer species-level
detail and grainier appearance against the smoother, species assem-
blage-dominated OB map (Fig. 5). In the Stowe region of Vermont,
for example, the PL map predicted more single-species dominant
stands of balsam fir, red spruce, and eastern hemlock, largely in
areas classified as mixed conifers on the OBmap. Yet the general spa-
tial distribution patterns of the predominant forest classes around
Stowe were very similar, with both maps showing mixed classes
around lowland and developed areas, mountain slopes dominated
by northern hardwoods and sugar maple, and spruce-fir related clas-
ses at high elevations.

Based on ground-reference plots, overall classification accuracy
among forest types was slightly higher for the PL (overall accuracy =
42%, KHAT = 33%, fuzzy accuracy = 86%) versus the OB classification
(overall = 38%, KHAT = 29%, fuzzy = 84%). The increased detail of
the PL classification also better matches the complex spatial heteroge-
neity of forests across the region. Given this, we consider the PL more
appropriate for mapping forest types using Landsat imagery in the
Northeast. For this reason, we include only a discussion of the PL results
below.

3.3.2. Pixel-level thematic forest classification
Applying the classification ruleset across the study area shows a spa-

tial distribution of forest classes that match expected patterns across
northern New York and Vermont (Fig. 6). Mixed hardwoods dominate
the lowlands, while sugar maple and northern hardwoods occupy the
low to mid elevation slopes of the Adirondack and Green mountain
ranges. Spruce-fir and spruce-fir-birch assemblages were classified
throughout the high elevations of both the Green and Adirondack
mountains. Eastern white pine and hemlock were classified primarily
along the Lake Champlain valley corridor. Interesting anomalies include
the near absence of pixels classified as oak- or birch-dominant, and
complete absence of aspens. While this may simply reflect their rela-
tively low abundance as pure stands across the region, it is also likely
that the low number of calibration endmembers has limited our ability
to capture a sufficient range of spectral signatures for these tree species.

Accuracy assessment for the pixel-level classification resulted in 42%
overall accuracy (KHAT= 33%) (Table 4). When allowing for confusion
between pure target species and common assemblages that by defini-
tion contain a significant portion of the target species, overall accuracy
doubled (fuzzy accuracy = 86%), indicating that a majority of error re-
sulted from incorrectly predicting mixed species classes for plots that
were dominated by one species (but likely also contained others). Typ-
ically, the actual dominant species was an important component of the
incorrectly predictedmixed species class (e.g. sugarmaplewas often in-
correctly classified as northern hardwoods, of which it is a major
component).

Image of Fig. 4


Fig. 6. Forest cover map spanning northern New York and Vermont produced by integrating spectral unmixing of multi-temporal Landsat imagery and a rule-based, OBIA classification
scheme.

Fig. 5. A side-by-side comparison of the object-based (top) and pixel-level (bottom) classifications in the Stowe region of Vermont.
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Table 4
Error matrix based on 50 ground-reference plots for the MTSU pixel-level forest classification. Bold indicates correct at the species-type level; italics indicate correct at the fuzzy level.

Actual class

Count Sugar
maple

Red
maple

American
beech

Northern
hardwoods

Birches Spruce-fir-birch Spruce-fir Red
spruce

Balsam
fir

Eastern
hemlock

Eastern
white Pine

Mixed Mixed
conifers

Mixed
hardwoods

Aspens Oaks Total User's
accuracy

Fuzzy
UA

Predicted
class

Sugar maple 10 1 2 1 14 71% 93%
Red maple 0 0 0% 0%
American
beech

0 0 0% 0%

Northern
hardwoods

3 1 3 2 1 2 12 25% 83%

Birches 0 0 0% 0%
Spruce-fir-birch 5 5 100% 100%
Spruce-fir 1 0 1 0% 100%
Red spruce 1 1 100% 100%
Balsam fir 0 1 1 0% 0%
Eastern
hemlock

1 1 2 50% 50%

Eastern white
pine

1 1 2 50% 50%

Mixed 1 1 1 2 2 0 1 8 0% 100%
Mixed conifers 1 2 0 3 0% 100%
Mixed
hardwoods

1 0 1 0% 0%

Aspens 0 0 0% 0%
Oaks 0 0 0% 0%
Total 15 1 1 5 4 6 0 1 3 5 3 1 0 1 2 2 50
Producer's
accuracy

67% 0% 0% 60% 0% 83% 0% 100% 0% 20% 33% 0% 0% 0% 0% 0%

Fuzzy PA 93% 100% 100% 100% 80% 100% 0% 100% 67% 100% 100% 100% 0% 0% 50% 0%
Overall
accuracy

42%

KHAT 33%
Fuzzy accuracy 86%
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The highest producer's accuracies were obtained for the most com-
mon forest types across the study area (Table 4): sugarmaple, northern
hardwoods, and spruce-fir-birch. Lower user's accuracies for northern
hardwoods highlight the tendency of the ruleset to categorize single
species-dominant validation plots into this species assemblage class.
The lowest user's accuracies were obtained for less common species
with relatively low abundance across the study area. These included
birches and the three conifer species (balsam fir, eastern hemlock, and
eastern white pine), all of which were often classified as mixed species
assemblages. If identification of less abundant species is desired, the
percent basal area thresholds of the ruleset could be lowered to denote
“dominant stands”. However, we suggest that if the goal of using these
forestmaps is examining the spatial and structural distribution of a par-
ticular species, using the percent basal area maps themselves would be
preferential to using the thematic classification.

3.3.3. Comparison to other forest mapping products
In order to evaluate how this integrated forest classification com-

pared to other commonly used forest covermaps, we consider the spec-
ificity of forest classes (number and structure of distinct classes), the
spatial resolution, and the mapping accuracy of each product (Table 5).

Our forest classification resulted in 15 forest types (no aspen stands
mapped) across the study area, based on the 10 most common genera/
species in the region and six common assemblages of these species. The
National Forest Type Map and LANDFIRE EVT forest class structures are
most comparable to our MTSU integrated classification with 29 and 17
predicted across the study area. Both include common species assem-
blages such as spruce-fir and northern hardwoods. The National Forest
Type Map also includes species-specific classes (e.g. balsam fir, eastern
hemlock, eastern white pine, etc.). Where the LANDFIRE EVT classifica-
tion diverges from ours is in its use of disturbance and geographic mod-
ifiers to describe certain forest types (e.g. ruderal forest, Atlantic swamp
forest). Further, its mixed forest classes often cover a broader range of
species assemblages, (e.g. pine-hemlock-hardwood and spruce-fir-
hardwood). The NLCD product only classifies three broad forest types:
deciduous, evergreen, and mixed.

Our 50 ground-reference plots represented 11 forest types for our
MTSU integrated classification, five for the LANDFIRE EVT, and six for
the National Forest Type Map (Table 5). Of the five LANDFIRE EVT clas-
ses, nearly all were predicted as belonging to one of three mixed forest
types (pine-hemlock-hardwood, spruce-fir-hardwood, or yellow birch-
sugar maple). Of the six National Forest Type Map classes, our ground-
reference plots were predominantly categorized as one mixed forest
type (sugar maple-beech-yellow birch). This simplification of the het-
erogeneity of species assemblages found across the Northern Forest re-
gion into broad categories resulted in a gross over-prediction of yellow
birch-sugar maple (LANDFIRE EVT) and sugar maple-beech-yellow
birch (National Forest Type Map) across the landscape, while missing
other species entirely.

Focusing on the topographically diverse forests in the Stowe region
of Vermont, a comparison of these forest classifications highlights the
increased spatial detail and specificity of our MTSU product (Fig. 7).
The MTSU predicts balsam fir, red spruce, spruce-fir, and spruce-fir-
birch stands at high elevations, in addition to scattered balsam fir dom-
inated stands in lowland swamp areas near suburban developments.
Along mountain slopes, northern hardwoods and sugar maple stands
are found throughout the low-mid elevations, with rare occurrences
Table 5
Comparison of class specificity, spatial resolution, and accuracy of forest mapping products.

Product # Forest classes Spatial resolution (m)

MTSU 15 30
LANDFIRE 17 30
National forest type map 29 250
NLCD 3 30
of birch and American beech dominated pixels. The valleys are largely
dominated by the MTSU's broadest species assemblages: mixed,
mixed conifers, and mixed hardwoods. These results contrast those of
the National Forest Type Map and LANDFIRE EVT, which both classify
much of the region as a mixed northern hardwoods-type (maple/
beech/birch and yellow birch-sugar maple, respectively). The National
Forest TypeMap also does poorly distinguishing forest from non-forest,
and has amore pixelated appearance due to its coarse spatial resolution.
The spatial distribution of NLCD forest cover aligns most closely with
that of the MTSU product, but at a much coarser forest type specificity.

To compare accuracy among the mapping products, we used the
same 50 ground-reference plots referenced throughout this study.
Since there are inherent differences in how each product categorizes
forest types, ground-reference plots were assigned to match the com-
parison product categories based on their species composition. Our re-
sults indicate that our MTSU classification was more accurate than the
LANDFIRE EVT product (42% compared to 28% overall accuracy respec-
tively) and more than twice as accurate as the National Forest Type
Map (42% compared to 18% overall accuracy respectively) (Table 5).
While fuzzy accuracies are improved for the National Forest Type Map
and LANDFIRE EVT products, this is likely inflated by their broad class
structure and near uniform assignment of plots into mixed forest type
classes that include most of the common species/genera found within
our ground-reference dataset.

When modifying all four classifications to match the coarser NLCD
forest types (i.e. deciduous, evergreen, and mixed forest) for a more di-
rect comparison of the general performance of these models, again the
MTSU outperformed the LANDFIRE EVT, National Forest Type Map,
andNLCD products (76%, 66%, 62% and 56% overall accuracy, respective-
ly) (Table 5). Most of the error in the MTSU was due to an over-predic-
tion of mixed forest in conifer dominated plots. Deciduous forest, by far
themost common class in the ground-reference data, was also themost
accurately predicted in each classification. The high deciduous class ac-
curacies of the LANDFIRE EVT and National Forest TypeMapwere again
driven by their propensity to predict yellow birch-sugar maple and
sugar maple-beech-yellow birch across the landscape.

4. Conclusions

Our results indicate that the use of multi-temporal Landsat imagery,
spectral unmixing, and a hierarchical ruleset classification (‘MTSU’ inte-
grated approach) offers improved species specificity and accuracy rela-
tive to existing forest classification products. The key to this approach
includes: 1) the use of multi-temporal imagery to capture species-spe-
cific differences during important phenological periods; 2) spectral
unmixing tomore accurately characterize themixed composition of for-
ests in the study area; and 3) integration of resulting percent basal area
maps and ancillary environmental variables into a hierarchical, rule-
based classification scheme.

Public availability of Landsat and FIA data enable the broad imple-
mentation, as well as scalable nature, of this approach. However, it is
important to note that this approach hinges upon the user's ability to
obtain high quality (low cloud cover) multi-temporal imagery during
key phenological periods, which is often difficult in temperate and
mountainous regions. It also requires a robust set of “pure” species
plots for use as endmembers in spectral unmixing and calibration of
the percent basal area models. This can be difficult for rare and non-
Spp-type accuracy Fuzzy accuracy NLCD coarse accuracy

42% 86% 76%
28% 80% 66%
18% 70% 62%
– – 56%



Fig. 7. A side-by-side comparison of the MTSU (top left), LANDFIRE EVT (bottom left), NLCD (top right), and National Forest Type Map (bottom right) forest cover maps in the Stowe region of Vermont.
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dominant species, or those that typically do not form homogeneous
stands.

Accurate, species-specific percent basal area and thematic forest
maps provide forest researchers, managers, and policymakers with
powerful demographic tools to inform management activities, identify
potential ‘hotspots’ for invasive pest/pathogen outbreaks, and inform
other large-scale modeling applications (e.g. carbon storage dynamics,
forest fragmentation/conversion, wildlife habitat/movements, etc.).
That we were successful in mapping species distributions in the North-
east, given the high spatial heterogeneity of its often mixed species for-
ests, bodeswell for applying this approach in other, less diverse regions.
Further, the extensive Landsat archive lends itself to using this approach
to investigate spatiotemporal trends in tree species composition, of par-
ticular interest given the anticipated effects of climate change on forest
demographics.
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