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Abstract. The National Ecological Observatory Network (NEON) seeks to facilitate ecological prediction at
a continental scale by measuring processes that drive change and responses at sites across the United States for
thirty years. The spatial distribution of observations of terrestrial organisms and soil within NEON sites is
determined according to a “design-based” sample design that relies on the randomization of sampling loca-
tions. Development of the sample design was guided by high-level NEON objectives and the multitude of data
products that will be subjected to numerous analytical approaches to address the causes and consequences of
ecological change. A requirement framework permeates the NEON design, ensuring traceability from each
facet of the design to the high-level requirements that make the NEON mission statement actionable. Require-
ments were developed for the terrestrial sample design to guide the key components of the design:

1. Randomizing the sample locations ensures the unbiased collection of data, is appropriate for organ-
isms and soil, and provides data suitable for a variety of analyses.

2. Stratification increases efficiency and allows sampling to focus on those parts of the landscape mea-
sured by other NEON observation platforms.

3. Attention to the sample size and spatial plot allocation ensures that data products will be sufficient
to inform questions asked of the data and the NEON objectives.

4. Establishing a framework with the capacity for re-evaluate and design iteration allows for adaption
to unexpected challenges and optimization of the sample design based on early data returns.

The utility of the NEON sampling design is highlighted by its application across terrestrial systems. The
data generated from this unique design will be used to quantify patterns in: the abundance and diversity
of small mammals, breeding birds, insects, and soil microbes; vegetation structure, biomass, productivity,
and diversity; and soil biogeochemistry.

Key words: National Ecological Observatory Network; sampling terrestrial organisms and biogeochemistry; spatial
sample design; Special Feature: NEON Design.
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INTRODUCTION

The National Ecological Observatory Network
(NEON) is designed to improve understanding
and forecasting of ecological change at continental
scales over decades (Schimel et al. 2011). Insight
into ecological cause and effect will result from
integrating systematic observations of drivers of
change and responses at as many as 47 terrestrial
sites across the continental United States, Alaska,
Hawaii, and Puerto Rico for thirty years (Vitousek
1997, Keller et al. 2008, Luo et al. 2011). The ter-
restrial sites encompass wildlands and a variety
of gradients (e.g., land use, species invasion, nitro-
gen deposition) to address regional- and continen-
tal-scale questions. Within sites, measurements of
atmosphere, soil, water, select organisms and dis-
ease, and airborne observations yield freely avail-
able data, enabling a new paradigm in ecological
science, education, and policy.

The National Ecological Observatory Network
employs automated sensors and observations to
generate data regarding ecological status and
trends span spatial and temporal scales. Fixed-
wing aircraft census vegetation at landscape
scales (~400 km2) with high-resolution remote
sensing at annual time steps; tower-based sen-
sors capture temporally continuous fluxes over
smaller spatial extents (~0.5 km2). However, nei-
ther a census nor temporally continuous mea-
surements are appropriate for understanding
patterns of terrestrial biogeochemistry and
organisms at the scale of a NEON site (~5–
60 km2). A complete census of organisms and
biogeochemistry is biologically and financially
impractical—soil microbes are ubiquitous and
birds mobile. Likewise, measurement of these

ecological responses at sensor-like temporal fre-
quencies is impossible, and even frequent obser-
vations at local scales would likely provide
redundant information or, due to financial con-
straints, be limited in spatial extent. Hence, a
site-scale spatial sampling design is needed to
direct the observation and collection of terrestrial
organisms and soil to facilitate statistically rigor-
ous inference from the scale of plots to sites and
the continental Observatory.
Prescribing the number and spatial arrange-

ment of plots for the collection of the diversity of
organisms and soil observed by the NEON Ter-
restrial Observation System (TOS; Kao et al.
2012, Thorpe et al. 2016) in a way that informs
the continental-scale Observatory presents a for-
midable challenge. The strategy is described
herein: Guided by NEON principles and require-
ments, the TOS sampling design provides a data
collection framework that is statistically rigorous,
operationally efficient, flexible, and readily facili-
tates integration with other data to advance the
understanding of the drivers of and responses to
ecological change. It should be noted that while
this document provides the rationale and details
of the overall NEON sample design for terrestrial
organisms and soil, the description, justification,
and study design specifics for the taxonomic
groups and soil characteristics sampled are
described elsewhere (Barnett et al., in press,
Hinckley et al. 2016, Hoekman et al. 2016, 2017,
Springer et al. 2016, Thorpe et al. 2016).

DESIGN CRITERIA

The National Ecological Observatory Network
will enable understanding and forecasting of the
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impacts of climate change, land-use change, and
invasive species on continental-scale ecology by
providing infrastructure and consistent method-
ologies to support research and education (Keller
et al. 2008). The traceable links between this
high-level NEON mission statement and the data
the Observatory produces provide a framework
for the NEON design. The scope of the NEON
mission is generally defined by the Grand Chal-
lenges in environmental science identified by the
National Research Council (2001). High-level
requirements synthesize the mission, Grand
Challenges, and theoretical basis for measure-
ments into formalized statements that describe

the fundamental aspects and guiding architec-
ture of the NEON strategy (Schimel et al. 2011;
Table 1). The sample design for organisms and
soil is part of this requirement-driven hierarchi-
cal structure; high-level “upstream” require-
ments and “downstream” data products provide
context and constraints under which specific
requirements and details for the sample design
were developed.
The sample design for observations at local,

site-specific scales must deliver data that opti-
mally informs continental-scale ecology. Adopting
the requirement framework allows traceability to
elements of the continental sampling strategy and

Table 1. Connections between National Ecological Observatory Network (NEON) high-level requirements and the
requirements that guide the local, site-specific sample design for the terrestrial organism and soil observations.

NEONmission and high-level requirements from the NEON Science Strategy
Guiding principles and requirements
of the Terrestrial Sampling Design

NEON shall address ecological processes at the continental scale and the integration
of local behavior to the continent, and shall observe transport processes that couple
ecosystems across continental scales (i.e., continental-scale ecology)

Direct the collection of the raw
material for continental ecology

NEON will allow extrapolation from the Observatory’s local sites to the nation.
NEON will integrate continental-scale data with site-based observations to facilitate
extrapolation from the local measurements to the national Observatory.
NEON’s spatial observing design will systematically sample national variability in
ecological characteristics, using an a priori division of the nation to allow
extrapolation from limited intensive sampling of core wildland sites back to the
continental scale
NEON’s goal is to improve understanding and forecasting of ecological change at
continental scales.

Efficiently capture
landscape-scale pattern
and trendNEON shall detect and quantify ecological responses to and interactions between

climate, land use, and biological invasion, which play out over decades
NEON observing strategies will be designed to support new and ongoing ecological
forecasting programs, including requirements for state and parameter data, and a
timely and regular data delivery schedule
NEON shall observe the causes and consequences of environmental change in order
to establish the link between ecological cause and effect

Provide infrastructure that
co-locates terrestrial measurements
and links observations to other
NEON data streams

NEON’s measurement strategy will include coordinated and co-located
measurements of drivers of environmental change and biological responses
NEON shall provide infrastructure to scientific and education communities, by
supplying long-term, continental-scale information for research and education, and
by supplying resources so that additional sensors, measurements, experiments, and
learning opportunities can be deployed by the community

Facilitate spatial integration of NEON
data with community-driven
investigation

The NEON infrastructure shall support experiments that accelerate changes toward
anticipated future conditions
NEON will enable experiments that accelerate drivers of ecological change toward
anticipated future physical, chemical, biological, or other conditions to enable
parameterization and testing of ecological forecast models, and to deepen
understanding of ecological change
The NEON data system will be open to enable free and open exchange of scientific
information. Data products will be designed to maximize the usability of the data.
The NEON sites will be designed to be as amenable to new measurements and
experiments as possible in order to effectively provide NEON infrastructure to
scientists, educators, and citizens

Anticipate the need for design
flexibility

NEON infrastructure and observing system signal-to-noise characteristics will be
designed to observe decadal-scale changes against a background of
seasonal-to-interannual variability over a 30-yr lifetime

Optimize the design through iterative
observation and evaluation of
spatial and temporal variability
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the high-level requirements that constrain the spa-
tial observation at discrete sites across the conti-
nent (Table 1). The high-level requirements
provide a starting place—a set of lower-level
requirements specific to the sample design result
from the integration of these requirements with
input from statistically minded members of the
ecological community, literature, and other long-
term monitoring efforts (Table 1).

A more detailed explanation of the require-
ments associated with the terrestrial sample
design provides further guidance for the design:

1. Direct the collection of the raw data for continen-
tal ecology. Site-specific observations provide
the foundation of the continental Observa-
tory (Urquhart et al. 1998). The deployment
of an unbiased and consistent sample design
will provide comparable ecological response
metrics across sites and domains (Olsen
et al. 1999, Lindenmayer and Likens 2010).
Efforts to scale patterns to larger areas will
be aided, for example, by optimizing the
links to NEON remote sensing observations,
adequately characterizing landscape fea-
tures that dominate at regional scales, and
by sampling with methods comparable to
other network, agency, and other science
and monitoring efforts.

2. Efficiently capture landscape-scale patterns and
trends. Organisms and soil should be mea-
sured with intensity sufficient to detect the
presence of spatio-temporal trends over the
life of the Observatory (Legg and Nagy 2006,
Lindenmayer and Likens 2009). The design
must contribute to accurate, precise, and
unbiased descriptions of local landscapes.
Guidance on sample location and number
will be directed by the sample design (Urqu-
hart et al. 1998, Thompson 2012). The speci-
fic sample size is ultimately determined in
the science design associated with each TOS
measurement (Thorpe et al. 2016); trend
detection, dependent on determination of
space-time covariance structures (Cressie
and Wickle 2011), will depend on the diver-
sity of analytical approaches applied to the
data. Given the variety of research
approaches and questions to be addressed
with NEON data products, the sample
design framework must be applicable to

classical, contemporary, and future statistical
approaches that characterize patterns in
space and through time (Cressie et al. 2009,
Cressie and Wickle 2011).

3. Provide infrastructure that co-locates terrestrial
measurements and links observations to other
NEON data streams. The terrestrial measure-
ments must be co-located to enable an ana-
lytical framework for patterns and processes
which vary in space and time and may effect
each other (Fancy et al. 2009). Point-based
observations must also be readily integrated
with the spatially continuous NEON remote
sensing platform and temporally continuous
sensor measurements (Sacks et al. 2007, Sun
et al. 2010). The evaluation of correlative
relationships through the iterative combina-
tion of models and data (Luo et al. 2011) will
provide insight into mechanistic links
between the cause and response of ecological
change. These relationships can then be fur-
ther explored and tested with rigorous exper-
iments by the ecological community (Keller
et al. 2008, Lindenmayer and Likens 2010).

4. Facilitate spatial integration of NEON data with
community-driven investigation. The terrestrial
sampling design must provide a framework
that encourages the scientific community to
conduct experiments and other observations
that integrate with NEON data to synergisti-
cally and efficiently deepen understanding of
ecological processes (Lindenmayer and Likens
2010).

5. Anticipate the need for design flexibility. The
sample design must accommodate changes
as NEON responds to unexpected and/or
emerging patterns and contribute to ques-
tions contemporary ecology has not yet con-
sidered (Overton and Stehman 1996).

6. Optimize the design through iterative observation
and evaluation of spatial and temporal trends and
variability. The number and spatio-temporal
distribution of samples reflects assumptions
about the variability of responses, landscape
characteristics, and budget constraints. Early
data will serve to evaluate these assumptions
and provide guidance for the reallocation of
sampling to better address NEON questions
(Hooten et al. 2009, Lindenmayer and Likens
2009). Additionally, the unprecedented char-
acterization of NEON sites by the airborne
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observation platform will allow the identifi-
cation of gradients, disturbance, and/or other
landscape features to better understand spa-
tio-temporal patterns over the life of the
Observatory. Any adjustments to the design
should be made early to maximize the time
series from a consistent set of plots (Linden-
mayer and Likens 2009).

The high-level NEON requirements capture
the essence of the NEON mission and Grand
Challenges, creating direction and context for
actionable design of Observatory components.
The sample design requirements outlined above
stem from high-level design elements and pro-
vide further direction and constraints in the face
of specific design needs: How observations
should be distributed in space at the scale of
NEON sites.

SPATIAL SAMPLING DESIGN FOR THE
TERRESTRIAL OBSERVATION SYSTEM

Two principles guide the site-scale terrestrial
organismal sampling design: randomization and
robustness. Randomizing sample locations is
possible in—and facilitates comparability of data
across—a diversity of biomes (Carpenter 2008),
guards against the collection of data that are not
representative of the populations of interest
(Thompson 2012), and yields data suitable to a
diversity of analytical approaches (Cressie et al.
2009). The design must be robust in the sense
that it is capable of performing under a diversity
of conditions and accommodates a variety of
data types and questions (Olsen et al. 1999).

For terrestrial observations that span from
microbes to long-lived trees, NEON science ques-
tions will be addressed with hundreds of data
products. The ecological community will ask
untold additional questions and tease answers
from data with a range of analytical techniques.
And, these techniques will evolve over decades
(Cressie and Wickle 2011). Intended to detect
spatial patterns (Carpenter 2008) and temporal
trends across diverse landscapes and meet the
needs of contemporary and future ecological
paradigms (Cressie et al. 2009) in support of the
long-term Observatory, the sample design for ter-
restrial organisms and biogeochemistry includes
the following elements:

1. The sample frame is the area from which
observations are made (Reynolds 2012).

2. Random sampling allows an unbiased descrip-
tion of the landscape (Thompson 2012), facili-
tates integration with other data, supports
design-based inference (Sarndal 1978), and
provides data that can be assimilated into
numerous model-based approaches to infer-
ence and understanding.

3. Stratification increases efficiency (Cochran
1977) and provides a framework for describ-
ing the variability of landscape characteris-
tics targeted by the NEON design.

4. Sample size determination ensures that NEON
will contribute to ecology over the life of the
Observatory by providing sufficient data to
support key questions (Thompson 2012).

5. Sample allocation allows a distribution of
sampling effort appropriate to particular
observations and questions.

6. Data analysis with variance estimators pro-
vides a solution for analysis of data with
design-based inference (Stehman 2000).

7. Iteration allows optimization of the sample
design (Di Zio et al. 2004).

Furthering the understanding of ecological
change requires an emphasis on integration and
collocation of observations with a design not opti-
mized for any particular taxonomic group. The
spatial and temporal resolution and extent at
which the design resolves ecological patterns will
vary across responses and is ultimately con-
strained by scientific feasibility within an envel-
ope of logistics and funding. Hence, the proposed
design represents a multitude of compromises
from competing priorities and primarily focuses
on implementing continental-scale ecology at
local scales.

Sampling frame
The sampling frame defines the area from

which observations are made to characterize
variables of interest (Reynolds 2012). At the scale
of NEON sites, the sampling frame depends on
the type of plot (Thorpe et al. 2016) and taxo-
nomic group of interest. In the case of many of
the vegetation and soil observations (Thorpe
et al. 2016), the frame typically corresponds to an
associated management type or ownership
boundary (Fig. 1). This typically includes the
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location of the tower-based sensor measurements
and the aquatic measurements at some sites
(Thorpe et al. 2016). Design constraints limit the
spatial extent of some observations. Mosquito
sampling occurs within 45 m of roads, and small
mammal sampling occurs within 300 m of roads
due to the frequency of visit and equipment
required for sampling.

The size of the sampling frames is variable,
from small landscapes (e.g., an agricultural site
in Sterling, Colorado <5 km2) to larger wildland
sites (e.g., part of Oak Ridge National Lab
67 km2). At several sites, the area available for
sampling is too large given budget and travel
constraints or some sections of the site are not
available for sampling (e.g., Oak Ridge National
Lab). In these cases, a subset of the areas is tar-
geted for sampling based on discussions with
site hosts, local scientists, and logistical con-
straints. These truncated sites generally result in
a 15- to 80-km2 sampling frame.

The National Ecological Observatory Net-
work’s tower-based sensors measure physical
and chemical properties of atmosphere-related
processes such as solar radiation, ozone, and net
ecosystem exchange. Tower Plots (Thorpe et al.
2016) sample that part of the landscape reflected

in the sensor data to allow calibration and com-
parison of temporal trends. That sample space—
the airsheds and in some cases the landscape in
between—constitutes the sample frame for those
observations (Fig. 1).

Randomization
The unbiased sample generated by randomiza-

tion (Cochran 1977, Thompson 2012) is the foun-
dation of the sample design within NEON sites.
Randomly sampling from the frame eliminates
potential bias associated with subjective sam-
pling and affords the assumption that the statisti-
cal bias—the difference between the sample
mean and true mean—is zero (Cochran 1977,
Gitzen and Millspaugh 2012).
This unbiased sampling of target response

variables is essential to a probabilistic sample
design. Probability sampling mandates that each
randomly selected sample location have a
known, non-zero chance of being selected for
observation (Thompson 2012). The principles of
randomization allow the design-based inference
of population parameters from points to the
unsampled landscape by integrating data and
inclusion probabilities—the chance of each sam-
ple location being selected for observation—with

0 0.4 0.80.2 km0 2 41 km

Fig. 1. National Ecological Observatory Network (NEON)’s Domain 03 is located in the southeast United
States. The site at the Ordway-Swisher Biological Station in central Florida is managed as a research station by
the University of Florida and includes a diversity of pine on sandy soils, broadleaf forests on wetter soils, and
wet marshes. The site boundary encompasses a 34-km2 area. The NEON tower (in white) supports sensors that
measure fluxes from primary and secondary airsheds (in yellow). Airsheds, or in some cases, the complete 360-
degree area defined by the primary airshed radius, define the sample frame for vegetation and soil designed to
help inform flux observations.
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design-based estimators (Sarndal 1978, Stehman
2000). Appropriate estimators can be determined
by structure of the data and particular sample
design (Stevens and Olsen 2004).

Contemporary ecology relies on a variety of
alternative sampling approaches. For example,
systematic sampling locates observations accord-
ing to a uniform grid (Cochran 1977, Thompson
2012). By forcing sampling effort across the land-
scape, systematic sampling minimizes spatial
autocorrelation and can capture landscape
heterogeneity (Fortin et al. 1989, Theobald et al.
2007). However, the uniform distribution of sam-
pling limits the opportunity to capture spatial
patterns that might exist in the data (Fortin et al.
1989). Systematic designs that incorporate an ele-
ment of randomization (e.g., spatially balanced
designs) vary the spatial distance between sam-
ple locations, allowing the design to better
describe the impact of spatial patterns associated
with underlying processes. Other designs
include stratified (Cochran 1977, Overton and
Stehman 1996), spatially balanced sampling (Ste-
vens and Olsen 2004), cluster sampling (Cochran
1977, Stehman 2009), variable density designs
(Stevens 1997), and two-stage designs (McDon-
ald 2012). Not all of these strategies support
design-based inference. Sampling areas thought
to be representative of a site (i.e., subjective sam-
pling) assumes a near-perfect a priori under-
standing of the landscape (Stoddard et al. 1998,
McDonald 2012) and does not allow for the
detection of unexpected patterns (Lindenmayer
et al. 2010). The lack of fundamental randomiza-
tion results in a sample that is biased and incom-
patible with design-based inference to the
unsampled population(s) (McDonald 2012).

Model-based sample designs (Albert et al.
2010, Smith et al. 2012) are becoming increasingly
popular for specific research and monitoring
questions, but they are not sufficiently general
with respect to the design requirements for the
variety of organisms, soil, and questions NEON
hopes to address. Relying on models, instead of
design-based inference for the description of
unsampled landscapes and populations, frees the
sample design from constraints of randomization
imposed by a probability-based design (Sarndal
1978). Statistically rigorous modeling techniques
allow for the distillation of patterns from a sam-
ple. Basic approaches explain variability in the

response variable with traditional frequentist sta-
tistical models, typically linear statistical analyses
with corresponding necessary and sufficient con-
ditions. More complex techniques focus on the
spatial structure of data, rely on machine-learning
algorithms to understand non-linear relationships
between multiple variables (Elith et al. 2010),
allow parameters to be defined as probabilities
(Wikle and Royle 1999, Fuentes et al. 2007), or
describe patterns from data measured through
time and across space (Cressie and Wickle 2011).
These model-based approaches to inference can
be optimized by specific sampling efforts. Data
can be collected according to a stratified, non-ran-
dom design that targets the spatial structure of a
population (Ver Hoef 2002), captures the complete
dynamic range of particular variables (Di Zio
et al. 2004), or focuses on particular gradients and
patterns (Chao and Thompson 2001). However, a
sample design optimized for a specific question
or parameter fails the test of generality required
to sample many organisms and address a diver-
sity of ecological questions (Bradford et al. 2010).
By relying on randomization, the NEON sam-

ple design will produce data suitable to a variety
of analytical techniques, from design-based infer-
ence to model-based approaches (Cressie et al.
2009). This process of teasing patterns and
understanding from data is crucial to the success
of NEON. Facilitating the integration of dis-
parate data and identifying the mechanisms that
underlie observed patterns (Levin 1992) are keys
to understand the causes and consequences of
change over the life of the Observatory.
Randomization at NEON sites.—Collectively, the

design requirements provide a strong case for
explicit emphasis on the characterization of spatial
patterns. The NEON design addresses these con-
straints by sampling with a random, spatially bal-
anced sampling framework, resulting in a
probability-based study design with low to mod-
erate variance that is both simple and flexible (Ste-
vens and Olsen 2004). Potential sampling locations
are generated with the Reversed Random Quad-
rat-Recursive Raster (RRQRR; Theobald et al.
2007) algorithm that is similar to the Generalized
Random Tessellation Stratified (GRTS) method
implemented by several existing long-term ecolog-
ical monitoring efforts (Larsen et al. 2008, Fancy
et al. 2009). The principle difference is that RRQRR
achieves spatial balance in a Geographic
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Information System (GIS) environment and pro-
duces a complete sample (i.e., distributes potential
random and spatially balanced sampling locations
across the extent of each site) instead of a defined
sample size, providing design flexibility and
redundancy to assign alternative locations should
a plot be unsuitable for sampling (Theobald et al.
2007). Implementation in GIS facilitates the incor-
poration of site boundaries, identifies barriers to
sampling (e.g., roads, lakes), and enables the plot
locations to be viewed in maps.

The RRQRR algorithm provides the founda-
tion of the sample design, which consists of the
specific locations for the observation and collec-
tion of terrestrial organisms and soil. Every sam-
ple unit across the sample frame receives a
potential plot location that is numbered in a spa-
tially balanced framework, addressed with a
named location, randomized, and ordered in a
one-dimensional list. Selecting sequential sample
locations from this list provides a random, spa-
tially balanced design (Theobald et al. 2007).
Generation of the spatially balanced design is
accomplished with the RRQRR function that
maps 2-dimensional space into 1-dimensional
space. Reversed Random Quadrat-Recursive
Raster employs Morton ordering (Theobald et al.
2007), a hierarchical quadrant-recursive ordering.
Morton ordering creates a recursive, space-filling
address by generating 2 9 2 quads that are com-
posed of upper left, lower left, upper right, and
lower right cells and nested at hierarchical scales.
Each cell is assigned a Morton Address that
reflects the recursive order as well as a corre-
sponding sequential Morton order. The Morton
address is then reversed to achieve a systematic
pattern, and the cells at each hierarchical quad-
rant level are randomized. The algorithm recur-
sively generates these nested, hierarchical quads
with associated Morton address, Morton order,
reversed Morton address, and randomization
until the cell size coincides with the specified
sample unit size—a 30 9 30 m gridded cell in
the case of the NEON design—such that a com-
plete sample is generated for the entire sample
area. Mapping the two-dimensional space into
one-dimensional space as a list sorted by Morton
order and sequentially selecting corresponding
sample locations from this list results in a spa-
tially balanced, random sample design (Fig. 2).
The complete sample generated by the RRQRR

algorithm allows design flexibility that is critical
to logistical efficiency and sound science. Should
a particular plot be unsuitable for sampling, the
next unassigned, sequential plot on the ordered
list can be included in the sample. Other reasons
to include additional plot locations from the
complete sample may arise. Results from initial
sampling will provide data to direct iterative
observations that might require different sample
sizes and distribution. Additionally, independent
Principal Investigator-driven science may more
efficiently address questions beyond the scope of
the NEON design by leveraging the NEON data
stream and utilizing sample locations specified
by this design approach. The availability of sam-
pling locations from the NEON terrestrial study
design will facilitate this integration.

Stratification
Stratification divides the landscape of interest

into non-overlapping subareas from which sam-
ple locations are identified (Cochran 1977, John-
son 2012). This approach provides value when
the ecological measurements of interest are more
similar within a stratum than among strata
(Johnson 2012). Specifically, from the perspective
of design-based inference, stratification aims to
reduce the variance (Nusser et al. 1998, Scott
1998) of parameter estimates under the condition
that the average variation of an estimator within
a stratum is less than the average variation
among strata (Michaelsen et al. 1994). The
increase in precision typically results in greater
efficiency; fewer observations describe the
within-stratum variability of parameter estimates
and patterns of interest across the entire sam-
pling frame (Cochran 1977).
The NEON terrestrial sample design stratifies

by land cover type in a manner consistent with
the guiding principles of the domain delineation,
to facilitate comparison within and across NEON
sites, and ensure the design captures environ-
mental gradients at each site. Stratification
according to the National Land Cover Database
(NLCD; Fry et al. 2011) provides a continuous
land cover classification across the United States
including Puerto Rico, Alaska, and Hawaii,
allowing consistent and comparable stratification
across the diversity of NEON sampling frames.
This stratification satisfies multiple design
requirements and objectives.
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Fig. 2. The spatially balanced Reversed Random Quadrat-Recursive Raster (RRQRR) design for locating sample
plots across National Ecological Observatory Network (NEON) sites. RRQRR assigned Morton addresses to a very
large number of cells in a raster. The steps to create a spatially balanced list based on the RRQRR design include (a)
the recursive order formation of the Morton Address on a two-dimensional frame of coordinates into quadrant levels,
the numbers in red represent one quadrant level, and numbers in black represent another quadrant level; (b), each
cell is assigned a Morton addresses that represents the recursive order; (c) each cell is also assigned a sequential Mor-
ton order; (d) the Morton Address is reversed to create a uniform systematic pattern; (e) the systematic pattern is also
reflected in the sequential Morton order; (f) and cells are randomized at each quadrant level (Theobald et al. 2007).
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First, stratification is an integral part of the
NEON design at multiple scales, and when
applied to the terrestrial sample design, it pro-
vides consistency and ensures observations
describe local landscape characteristics essential
to the continental-scale Observatory. The National
Ecological Observatory Network domains—
essentially a stratification of the continent—were
derived from eco-climatic factors (Hargrove and
Hoffman 2004) that contribute to large-scale pat-
terns of vegetation (Fig. 3). Within each domain,
NEON sites are selected to represent the domi-
nant vegetation type (Schimel et al. 2011). At each
NEON site, tower-based sensors were positioned
to measure these dominant vegetation types and
other ecosystem properties that drive ecological
response (Chapin et al. 2012, Clark et al. 2012,
Sala et al. 2012). Observing terrestrial biogeo-
chemistry and organisms in dominant vegetation
types at each NEON site will quantify the rela-
tionship between state factors—variables that con-
trol characteristics of soil and ecosystems (Chapin
et al. 2012)—and ecological response. Through
time, these observations will provide insight into
the causes and consequences of change at NEON
sites which, due to the scalable design, will fur-
ther understanding at larger spatial scales.

Second, stratification by land cover allows dif-
ferential allocation of resources and sampling
effort across cover types. Sampling with an initial
allocation that makes assumptions about patterns
of the variability associated with an ecological
response across the landscape allows for a distri-
bution of observations that will stabilize variance
of estimators among strata. Approximately equal
patterns of variability facilitate comparison of
ecological response across vegetation types
within a site and, crucial to the success of the con-
tinental Observatory, comparison among NEON
sites as well.
Caveats associated with stratification by cover

type merit recognition (e.g., vegetation will
change over time; Scott 1998). The National Eco-
logical Observatory Network hopes to capture
this change, but the choice of dynamic strata will
complicate design-based inference (Fancy et al.
2009). As such, NEON will track plot-specific
changes in strata and develop statistical methods
to deal with dynamic strata adjustments to
design-based estimators and the inclusion proba-
bility of each sampling stratum (Wikle and Royle
1999, Stevens and Olsen 2004, Luo et al. 2011)
that will be available to users. Many other long-
term monitoring efforts either do not stratify or
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Fig. 3. A subset of NEON domains layered on top of land cover types as described by the National Land
Cover Database.
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select immutable strata (Reynolds 2012). Eleva-
tion might be suitable at sites where vegetation
changes reflect significant topography and relief
(Li et al. 2009); however, much of the biological
variability across the continent responds to other
factors. Soil type is less likely to change in a
meaningful way over the life of the Observatory
is mapped across the continent. However, many
soil maps were created according to inconsistent
standards at the county level, are not highly
accurate, and interpolation between dispersed
sampling locations was based on vegetation pat-
terns inferred from aerial photography. These
and other unchanging strata might be appropri-
ate for a local study or to optimize for a particu-
lar question or taxonomic group (Fancy and
Bennetts 2012). Stratification by vegetation repre-
sents a compromise that emphasizes a consistent
approach to continental-scale ecology that can be
implemented across all domains.

Stratification at NEON sites.—The land cover
vegetation strata were based on the NLCD (Fry
et al. 2011), which was developed through a part-
nership that includes the US Geological Survey,
the Environmental Protection Agency, and other
federal partners. The categories are general and
describe high-level and coarse descriptions of
land cover (Fig. 4). In the context of the RRQRR
sample design, stratification is achieved by inter-
secting points from the ordered sample list with
each land cover type by assigning an inclusion
probability of one for areas associated with the
target vegetation type and zero for non-target
types. In other words, the ordered one-dimen-
sional list developed by the RRQRR remains
unchanged; selecting points within a particular
land cover type filters that list such that plots are
skipped to distribute plots across target strata, but
the ordered list is maintained within each strata.
The result is a random, spatially balanced sample
design that is stratified by land cover (Fig. 4).

Using a subset of the NEON sampling design and
plots as a simple random sample

The spatially balanced, random sampling loca-
tions generated by the RRQRR algorithm pro-
vide the sample design with flexibility. Users of
NEON data in need of a strictly random sample,
not the stratified-random sample design, may
conduct analyses with a subset—or all in some
cases—of the plots sampled by including plots in

ordered RRQRR list that are not interrupted for
the NLCD stratification. The initial steps of the
sample generation (Fig. 2), prior to the filtering
of potential plot locations by the NLCD strata,
result in a design that conforms to assumptions
of a random sample (Theobald et al. 2007). At
sites characterized by a single NLCD type, the
NEON design is analogous to a simple random
design (Table 2). With multiple strata, potential
viable sample locations (non-viable plots are
skipped for safety and logistical challenges, etc.)
from the initial one-dimensional ordered list are
only skipped to allow the ordered allocation of
target sample sizes (see Minimum sample size and
Sample allocation) across each NLCD type. Those
plots that adhere to the one-dimensional RRQRR
list without interruption for stratification pur-
poses can be treated as a simple random sample
(Theobald et al. 2007). The number of sample
locations and the fraction of the total sampling
effort that can be considered random depend on
site size, heterogeneity, and the evenness of tar-
get strata. Every sample location can be consid-
ered random at homogeneous sites, while those
sites characterized by numerous strata result in a
relatively smaller sample size available to any
analysis dependent on a random sample
(Table 2). A list of plots that can be used in the
context of a random design by site will be avail-
able through the NEON data portal. This design
flexibility makes the data more broadly available
to a variety of NEON data consumers, ecological
questions, and statistical applications.

Minimum sample size
An overarching requirement of the design is

that minimally sufficient data be collected within
each stratum where samples are allocated. This
ensures that the NEON effort will provide tangi-
ble contributions to conceptual models of the
interactions between organisms, soil, and envi-
ronmental drivers over the life of the Observa-
tory. Simply put, if data will be collected in a
given vegetation class, it is necessary to ensure
these data are sufficient to describe local patterns
and, ultimately, inform the NEON Grand Chal-
lenges (Legg and Nagy 2006). Much like the need
for a generalized sample design that is robust to
observations of biogeochemistry and multiple
biological groups, the sample sizes must be suffi-
cient to answer an array of questions (Gitzen and
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Millspaugh 2012) across disparate ecological
response variables.

Quantitative sample size calculations are most
often performed against the backdrop of a classi-
cal hypothesis test and corresponding power
analysis. These analyses are constrained by a
number of factors including: a question of

interest, a corresponding hypothesis test regard-
ing a parameter of interest in a statistical model,
and assumptions regarding the error tolerances
(i.e., power) and estimates of parameter values
for the population of interest (Hoenig and Heisey
2001). In order to characterize minimally suffi-
cient sample sizes for the design, several key
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Fig. 4. Stratification by the National Land Cover Database at the Ordway-Swisher Biological Station (a). Blue
dots represent potential sampling locations from the spatially balanced and randomized sample, and red points
indicate hypothetical sample locations selected from the complete sample (b).
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Table 2. The sample design for Distributed Plots sampling within National Ecological Observatory Network sites
follows a stratified-random design.

Site, plot subtype, and NLCD cover types

Stratified-random plots

No. of random plotsArea (km2) No. plots

KONZ
Base plot 30 19
Grassland/herbaceous 29.8 23
Deciduous forest 3.3 7

Mosquito point 10 10
Grassland/herbaceous 4.9 9
Deciduous forest 0.3 1

Mammal grid 6 5
Grassland/herbaceous 28.2 4
Deciduous forest 3.1 2

Tick plot 6 3
Grassland/herbaceous 29.8 4
Deciduous forest 3.3 2

Bird grid 12 7
Grassland/herbaceous 29.8 9
Deciduous forest 3.3 3

TALL
Base plot 30 10
Deciduous forest 16.6 10
Evergreen forest 18.2 11
Mixed forest 13.8 9

Mosquito point 10 1
Deciduous forest 1.8 3
Evergreen forest 3.1 4
Mixed forest 1.6 3

Mammal grid 8 3
Deciduous forest 15.4 3
Evergreen forest 15.9 3
Mixed forest 12.4 2

Tick plot 6 5
Deciduous forest 16.6 2
Evergreen forest 18.2 2
Mixed forest 13.8 2

Bird grid 15 4
Deciduous forest 16.6 5
Evergreen forest 18.2 5
Mixed forest 13.8 5

JORN
Base plot 30 30
Shrub/scrub 45.7 30

Mosquito point 10 10
Shrub/scrub 45.7 10

Mammal grid 6 6
Shrub/scrub 45.7 6

Tick plot 6 6
Shrub/scrub 45.7 6

Bird grid 7 7
Shrub/scrub 45.7 10

Notes: However, an inherent flexibility in the generation of these sample location allows a subset of Distributed Plots to be
used as a random sample. Three example sites, Konza Prairie Biological Station (KONZ), Talladega National Forest (TALL),
and the Jornada (JORN) suggest that a greater number of samples function as part of a random sample at sites with fewer
strata. Greater within-site heterogeneity with respect to number and relative size of strata results in a smaller number of plots
that can be considered part of a random sample.
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questions derived from the design requirements
are considered.

As an initial case, a question representative of
the large-scale, long-term science NEON will
enable was considered to provide context for the
analysis of sample size: Is there a difference in
the temporal trends of a given response of inter-
est between two populations of interest? Exam-
ples of specific questions enabled by NEON data
might include:

1. Are trends in tree canopy height in the
deciduous forest cover type different
between a wildland site and a site managed
for timber harvest in Domain 5?

2. How do trends in invasive plant species rich-
ness differ between a wildland site and a site
managed for cattle grazing in Domain 12?

3. How do temporal patterns of plant phenol-
ogy (e.g., bud burst) differ between high
and low elevation sites in Domain 17?

The sample size analysis considered a test of
the difference in the magnitude of trends
between any two NEON sites. One way to
account for the diverse range of ecological
response that will be sampled is to characterize
the range of variability (across disparate popula-
tions of responses) in specific parameters to con-
strain the sample size. This approach does not
provide a unique solution; rather it provides a
range of minimum sample sizes that correspond
to the range of parameter values considered. In
this way, the differences in minimum sample size
as a function of the populations considered can
be accounted for. The result of this design con-
straint provides a guideline for sample size
rather than a definitive threshold. The analysis
incorporated the capability to assess the impact
of varying parameters that must be specified a
priori. Once several years of data are collected,
the design can be reassessed, and iteratively opti-
mized with alternative methods using data from
the initial sampling results.

A classical power analysis (Hoenig and Heisey
2001, Thompson 2012) guided the estimation of
sample size. A linear mixed effects model with
repeated measures was used to represent differ-
ences in trends between two sites. These analyses
can be applied to any test of a difference between
the slopes, which, respectively, quantify change

through time at each site where repeat measure-
ments are taken on the same sampling units
within each group. In general, the sampling units
correspond to the spatial extent across which the
response of interest is measured. In this context,
the sampling units are the pixels (i.e.,
30 m 9 30 m units) within the RRQRR grid at
each site. Values for the parameters in the statisti-
cal model that have relevance to these sample
size calculations—within site spatial variability
of the response variable, temporal variability of
the response variable, and temporal correlation
structures of the response variable—must be
informed by evidence from previous studies or
prototype data. The model accommodates both
compound symmetric and first-order autoregres-
sive temporal correlation structures for the
repeated measures component of the variance
calculations. In practice, the values associated
with the parameters will vary across each of the
response variables and across sites.
Initial sample size calculation.—In addition to the

sample variance, the magnitude of the correla-
tion associated with the repeated measures, and
the temporal correlation structure, sample size
calculations that utilize a power constraint
require specification of acceptable error toler-
ances for each of the two types of decision error,
minimum detectable difference associated with
the type II error, and estimates of relevant
parameters for (co)variance (Thompson 2012).
This specific application also requires the num-
ber of repeat measurements—initially assumed
one annually—within the course of the study.
The notation presented here generally follows
Searle (1971) and utilizes the approach of Yi and
Panzarella (2002) to specify the relationship
between the specified significant difference in
slopes through time (i.e., the location in the alter-
native parameter space where the power of the
test is constrained), as well as the treatment of
the variance associated with the slopes depicting
changes in trends through time at sites to be
compared. Hence, consider the following
repeated measures model with mixed effects:

Yi ¼l0 þ l0i þ a1 � timeþ b1i � time
þ a2 � site þ bint � site � timeð Þ þ ei

(1)

where Yi is a vector representing observations
through time t (i.e., the number of repeat
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measurements) at the ith sampling location; with
respect to measurement i, l0i is a random inter-
cept, b1i is a random slope of time for the ith sam-
pling location; l0 is a fixed intercept; a1 is the
mean trend for Yi; a2 is the difference between
the overall means from the groups of observa-
tions taken from the two different sites or sam-
pling frames; bint is the difference in trends
through time between the groups of observations
taken from two different sites or sampling frames
(it is a hypothesis test regarding this parameter
that constrains the sample size calculations pre-
sented here); and ei is a vector representing
errors through time t (i.e., the number of repeat
measurements) at the ith sampling location.

The parameters (Eq. 1) can be grouped accord-
ing to their consideration as representing either
random or fixed effects. The random effect
parameters were denoted as ki ¼ l0i; b1ið Þ and
the fixed effect parameters were denoted as
s ¼ l0; a1; a2; bintð Þ. Using this grouping of the
parameters, the Eq. 1 can be re-written as

Yi ¼ XisþMiki þ ei (2)

where Xi is a design matrix with t rows and p
columns, and Mi is a matrix with t rows and q
columns. Here q ≤ p and the columns of Mi are
also columns of Xi.

This formulation (Eq. 2) is convenient for the
expression of the sampling distribution of the
parameter of interest, bint. Using both the Wald
test and an appeal to the asymptotic normality of
bint allows for the following approximation of the
test statistic of interest (Yi and Panzarella 2002).

b̂intffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var b̂int

� �r �N 0; 1ð Þ (3)

Under the assumption that the sample sizes
between populations are equal, we can use Eq. 3
to arrive at the following formula for sample sizes

n ¼ Z 1�a=2ð Þ þ Zb
� �� XT

1V
�1X1 þ XT

2V
�1X2

� ��1

bint
2

(4)

where Z represents the quantile from the stan-
dard normal distribution corresponding to the
desired error rate for the type I and type II errors;
X1 is the design matrix corresponding to samples

of one population of interest; X2 is the design
matrix corresponding to the samples of the other
population of interest; V is the covariance matrix
for the observed data Y.
Initial minimum sample size at NEON sites.—

Ranges for the relevant parameter values in the
sample size calculations were considered since
the nature of the exact response across sites and
variables of interest is unknown. Population vari-
ance was estimated across the groups of organ-
isms to be sampled by NEON from a review of
literature (Knapp and Smith 2001, Eisen et al.
2008, Cardenas and Buddle 2009) that included
LTER publications and data archives (Cedar
Creek, Hubbard Brook, Jornada, Sevilleta, USGS
NAWQA Program) and initial data collection at
NEON sites. Ultimately, four levels of population
variance were assessed (Table 3).
In the absence of time series data, temporal

parameters were estimated with ten years of
MODIS-derived Normalized Difference Vegeta-
tion Index (NDVI) data assumed to be an ade-
quate high-level descriptor of ecosystem
variability. These data provide nine observations
for the lag-1 interannual correlation of this signal,
which integrates across space (i.e., the core site
footprint) and time as constrained to NDVI peak
greenness (Fig. 5). Correlations of these NDVI
data informed the range of temporal correlations
initially specified in the sample size calculations
(Fig. 5, Table 3). The form of the temporal corre-
lation structure was also characterized with these
NDVI data. The analyses across the twenty core
sites suggested that a compound symmetric cor-
relation structure was appropriate for the 20 sites
tested, but sample calculations are included for
the first-order autoregressive process as it is
likely some of the other 17 sites will display
trends more closely aligned with an autoregres-
sive framework.
Type I error tolerance was assessed at levels of

0.05 and 0.10. In order to impose a constraint on
the power curve for this test, it was necessary to
specify the significant difference between slopes
at which the power is set to 0.80. For these analy-
ses, a significant difference was determined to
exist if the slopes were >20% different from one
another.
In the case of the compound symmetric tempo-

ral specification, there was a monotonic, yet non-
linear relationship between the number of

 ❖ www.esajournals.org 15 February 2019 ❖ Volume 10(2) ❖ Article e02540

SPECIAL FEATURE: NEON DESIGN BARNETT ET AL.



samples, the temporal correlation, the population
variance, and collection of data through time
(Fig. 6). The impact of changing the type I error
rate from 0.1 to 0.05 was less than the range of
values corresponding to changes in correlation
and population variance. After thirty years, the
minimum number of samples needed across the
range of values considered in both the com-
pound symmetric and auto-regressive case was
10–189 (when type I error rate = 0.01), with the
lower number corresponding to the high correla-
tion, low variability case, and the larger number
of samples needed for the low correlation, high
variability case (Table 3). The magnitude of the
correlation associated with the autoregressive
process demonstrated a lack of monotonicity
between the number of samples and the number
of years data is collected (Fig. 6).

An important assumption that was made but
not assessed quantitatively in the context of the
sensitivity of the results was that of equal sample
allocation between sites. The calculations pre-
sented here are likely to be robust with respect to
minor deviations from this assumption of equal
allocation. For this work, the assumption that the
sample sizes are equal between sites was made
for the sake of simplicity. This interpretation
could be relaxed to accommodate different sam-
ple sizes if necessary given the variability in size
and heterogeneity across all NEON sites.

Another assumption was the specification of
the significant difference at which the power con-
straint is imposed. The parameter in the statisti-
cal model that was used to build the test for the
sample size calculations considered the slope of
the interaction between site and time. In order to
impose a constraint on the power curve for this
test, it was necessary to specify the significant
difference between slopes at which the power is
set to 0.80. For these analyses, a significant differ-
ence was determined to exist if the slopes were
>20% different from one another.

Sample allocation
The distribution of sampling effort—the sam-

ple allocation—must balance logistical con-
straints and science goals. Constraining the
sample to dominant landscape characteristics
reduces cost and focuses sampling on continental
ecology. An allocation that standardizes effort
across landscape variability will facilitate com-
parison within and across sites throughout the
Observatory (Olsen et al. 1999).
Initial sampling will largely be limited to dom-

inant cover types (>5% spatial coverage of the
sampling frame) within each site boundary. This
extends the guiding principle that if an ecological
response is to be measured, the data must be
meaningful in the context of NEON objectives.
NEON sites, and the tower-based sensors, were

Table 3. Minimum sample sizes associated with the compound symmetric form of the repeated measures, mixed
model for a range of correlation (q), population variance (r2), and years.

Year, by r2

Type I error is fixed at 0.10 Type I error is fixed at 0.05

q = 0.25 q = 0.50 q = 0.75 q = 0.25 q = 0.50 q = 0.75

r2 = 1.00
10 40 28 16 51 35 20
20 24 17 10 30 21 13
30 17 13 8 22 16 10

r2 = 2.00
10 76 52 28 97 66 35
20 44 30 17 56 39 21
30 30 22 13 40 28 16

r2 = 3.00
10 113 76 40 143 97 51
20 64 44 24 81 56 30
30 45 31 17 57 40 22

r2 = 4.00
10 149 101 52 189 128 66
20 84 57 30 107 73 39
30 59 41 22 75 51 28
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selected to represent dominant vegetation types
across the NEON domains. The co-located terres-
trial measurements will focus on quantifying
variability within these types in an effort to bet-
ter understand relationships between pattern
and process at local scales, as well as to con-
tribute to the description of biological patterns at
larger scales (Urquhart et al. 1998). The design
examined the implications of constraining sam-
pling to cover types greater than both 5% and

10% of aerial coverage. Given a fixed sampling
effort, there is a trade-off in selecting the level for
inclusion of vegetation classes between 5% and
10%; sampling vegetation types <10% (but >5%)
pulls samples away from the more representative
vegetation classes.
Excluding rare vegetation is not without trade-

offs. Disproportionate numbers of species may
be endemic to rare vegetation types (Stohlgren
et al. 1998), and rare vegetation types might be

Fig. 5. Annual temporal correlations from 2000 to 2010 of normalized difference vegetation index (NDVI) at
Harvard Forest (a), Ordway-Swisher Biological Station (b), University of Notre Dame Environmental Research
Station (c), and Oak Ridge National Lab (d). The lack of a consistent decay in temporal correlation at these sites
through time over any consecutive number of years suggests that a compound symmetric form is an appropriate
correlation structure of the sample size results.
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differentially susceptible to environmental
change (Stohlgren 2007, Suding et al. 2008).
These rare types (e.g., riparian corridors or eco-
tones) may be targeted in iterative sampling
efforts or by efforts organized by members of the
ecological community.

Data analysis with variance estimators.—Data col-
lected according to the spatially balanced and
stratified-random design is robust to a variety of
design estimation and modeling techniques (Sarn-
dal 1978, Cressie et al. 2009). While a particular
approach might benefit from a model-based sam-
ple design or stratification conducive to a specific
question, most analytical and data assimilation
approaches can accommodate data based on prin-
ciples of randomization. Perhaps the most simple
approach to inference leverages the probabilistic
nature of random design with design-based infer-
ence (Reynolds 2012). In the context of the NEON

data, design-based inference can be handled by
simply treating the data as a simple random sam-
ple when samples are allocated proportional to
strata area. The samples of all TOS protocols from
Distributed Plots, Grids, and Points except plant
diversity are allocated in proportion to the area of
the strata. In these cases, observations carry equal
information content to the larger population. This
self-weighting sample—the sample weights are
equal—allows the resulting data to be treated as a
simple random sample when calculating statisti-
cal moments (Cochran 1977, Lohr 2010). How-
ever, in cases when there is lower variance within
strata, these simple random sample estimators
will have higher variance than estimators specifi-
cally designed to handle data from a stratified-
random design.
Under the assumption of a stratified-random

design, the appropriate design-based estimator

Fig. 6. Minimum sample size as a function of years and temporal correlation for the compound symmetric
correlation structure (a) and the autoregressive structure (b) with the type I error set at 0.1 (Data S1).
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(Stevens and Olsen 2004, Thompson 2012) was
identified to ensure rigor of the sample design
(Lindenmayer and Likens 2009). A spatially bal-
anced design stratified by vegetation type is
equivalent to a stratified-random sample (i.e.,
within each strata each sample of a given size
has an equal probability of selection). Estimators
have been developed for the computation of the
stratified sample mean and variance when data
are collected according to a stratified-random
sample design (Thompson 2012). The estimator
of the sample mean is given by

�ystrat ¼ 1
N

XS
i¼1

Ni�yi (5)

where �yi is the sample mean from the ith stra-
tum; Ni is the number of units in the ith stratum;
N is the number of units across all strata; and S is
the number of strata.

An unbiased estimator of the variance for this
estimator is given by

dVar �ystratð Þ ¼
XS
i¼1

Ni

N

� �2 Ni � ni
Ni

� �
s2i
ni

(6)

where s2i is the sample variance from the ith stra-
tum and ni is the number of units in the sample
from the ith stratum.

The estimators adjust for differences in sam-
pling intensity within each strata by, in the case of
the mean, dividing the number of units in each
stratum by the number of units across all strata
(Eq. 5), and sample variance of each stratum by
the number of units in the sample from each stra-
tum in the case of the variance estimator (Eq. 6).
The area is computed using the 30-m2 spatial res-
olution that corresponds to the NLCD delineation
within the footprint of the site. These pixels are
considered the sampling units in these calcula-
tions. In situations where the sample sizes within
strata are sufficiently large (allowing for more
comfortable assumption of normality via the cen-
tral limit theorem), approximate confidence inter-
vals can be formed using the following

�ystrat � Z a=2ð Þ � dVar �ystratð Þ
� �1=2

(7)

where Z(a/2) is the value from normal distribu-
tion corresponding to a 100(1 � a)% confidence
interval.

Few of the sites in the initial implementation will
have strata with sufficiently large samples that
allow this approximation (Eq. 7). For strata with
sample sizes smaller than 30, Thompson (2012)
suggests using a t-distribution with degrees of free-
dom approximated using Satterthwaite’s method

d ¼
PS

i¼1 ais
2
i

� �2

PS

i¼1
ais2ið Þ2

ni�1ð Þ

	 
 (8)

where d is the Satterthwaite approximation for
the degrees of freedom and

ai ¼ Ni Ni � nið Þ=ni (9)

where ai = the variance coefficients.

Adaptation
The first several years of NEON will provide

data to inform the design. Those data will test
design assumptions, evaluate the ability of the
design to detect spatial and temporal trends
within and across NEON sites, and direct adjust-
ments to the design (Wikle and Royle 1999).
Prior to optimization, the distribution and

number of plots associated with each NEON site
may require adjustment as a result of logistic
constraints, alterations or advancements of scien-
tific methods and information, and an improved
understanding of site-specific population vari-
ability. Some of the proposed plot locations may
be unavailable for NEON sampling due to:

1. The host institution or landowner may reject
the a proposed plot due to ecological con-
cerns (presence of endangered species or
other long-term research) or other logistical
reasons (road construction).

2. Plots may intersect buildings, roads, or
other developments or natural features such
as rock formations that are not suitable for
NEON sampling.

3. The location may be inaccessible due to
steep slopes or other natural features that
pose danger to field technicians.

4. The time to travel to remote locations may
make the observation too costly. The
National Ecological Observatory Network is
committed to a design that can allow infer-
ence to the target study area, but a design
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with travel time that exceeds allocated fund-
ing may require alterations that reduce the
number of locations or alters the sampling
frame.

5. NLCD classification error will result in plot
locations that do not land in the target vege-
tation type. If the misclassification is limited
in extent, the next appropriate plot in the
target NLCD class can be selected. If NLCD
class does not exist at a site, erroneous char-
acterizations may need to be corrected with
the NEON remote sensing platform.

Linking continuous surfaces with ground-
based point measurements will provide new
ways to measure ecological patterns and trends
(Ollinger et al. 2008). Where remote sensing
proxies for ground measurements are robust, or
in the rare case that there is a 1:1 comparison
between a ground measurement and a remotely
sensed measurement, the airborne data approxi-
mate a complete census of variables of interest at
a given point in time (Asner et al. 2008). This
information changes the notion of, and in some
instances the need for, a ground-based sampling
approach. In the case of the many variables that
cannot be directly measured with a remote
approach (e.g., disease, microbial functional
groups, insects, small mammals), the airborne
imagery will provide information (e.g., the struc-
ture of small mammal habitat) that might direct
a reallocation of sampling effort.

For many processes, NEON will not be able to
determine whether the study design and associ-
ated observations are able to detect the nature of
the functional relationships between drivers and
ecological response until more is known about
trends, temporal variability, and uncertainty
associated with measurements (Chao and
Thompson 2001, Fuentes et al. 2007). Data col-
lected over the first several years will define the
measurement accuracy and precision, and sam-
pling intensity and frequency needed to detect
trends (Di Zio et al. 2004). The site-specific study
design will likely require alterations to suffi-
ciently inform local-scale allocation.

CONCLUSION

As a continental-scale observatory, NEON will
provide comprehensive data that will allow

scientists to address the impacts of change on eco-
logical patterns and processes. Detecting change,
or ecological trends, at regional and continental
scales requires specific long-term observation at
local scales. The sample design provides a scien-
tifically rigorous framework that directs the spa-
tial location of local observations. It is an integral
component of the larger NEON strategy which is
guided by the assimilation of science questions,
guiding principles and requirements, multiple
observing platforms with specific protocols, prod-
ucts, analyses, and mechanisms for sharing the
results. This sample design is a fundamental com-
ponent of the Observatory.
Specification of a sample design suitable to a

long-term, continental-scale ecological observa-
tory faces several general challenges which must
subsequently be translated into specific design
constraints. The design must be appropriate for
sampling multiple taxonomic groups and pro-
cesses and be capable of sampling such that
cohesive integration of drivers and response can
be achieved. Detecting these relationships and
temporal trends across multiple taxonomic
groups is a challenge, and time and rigorous
analyses are required to determine the efficacy of
NEON data in this context. The National Ecolog-
ical Observatory Network data will be public
and confronted by ecological community with
very different methods for addressing untold
ecological questions. The sample design must
accommodate these different analytical para-
digms. Finally, the design must provide sufficient
information for the detection and quantification
of continental-scale trends in ecological respon-
ses. These conditions collectively constrained the
development of the site-scale sample design. The
design is randomized and stratified by vegeta-
tion. Guidelines for minimum sample size, analy-
sis of data, and optimization are considered.
These efforts will provide unbiased data
products that can be assimilated into both
design- and model-based approaches to statisti-
cal inference for the efficient detection of trends
scalable within the context of the NEON design.
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