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A B S T R A C T

Residential development is one of the most intensive and widespread land uses in the United States, with
substantial environmental impacts, including changes in forest cover. However, the relationships between forest
cover and residential development are complex. Contemporary forest cover reflects multiple factors, including
housing density, time since development, historical land cover, and land management since development. We
investigated how forest cover varies with housing density, housing age, and household income over a range of
development intensities, in six ecoregions within New York State, Wisconsin, and Colorado. We find areas with
residential development do retain important forest resources: across landscapes they are typically more forested
than areas that remain undeveloped. However, forest cover consistently had a negative, inverse relationship with
housing density, across study areas. Relationships between forest cover and housing age and household income
were less common and often restricted to only portions of a given region, according to geographically weighted
regression analyses. A better understanding of how forest cover varies with residential development, outside of
the typically studied urban areas, will be essential to maintaining ecosystem function and services in residential
landscapes.

1. Introduction

Residential development is one of the most widespread causes of
land use change in the United States (Brown et al., 2005; Pejchar et al.,
2015) and globally (Alberti, 2005). In the U.S. homes are increasingly
dispersed in low- and moderate-density suburbs and exurbs, consuming
more land per household than urban development. In total, high-den-
sity urban land only expanded from 1% to 2% of the conterminous U.S.
land area from 1950 to 2000, while exurban land expanded from 5% to
25% (Brown et al., 2005). The environmental impacts of low-density
development are wide-ranging, and of particular concern when housing
is built in forests or other natural vegetation (Hansen et al., 2005;
Kramer, 2013). Building homes in forests removes and fragments ve-
getation, adds impervious surface, and introduces human residents and
accompanying domestic animals and non-native plant species (Bar-
Massada et al., 2014). Ecological impacts of this development are
profound, including altered nutrient and biogeochemical cycles, in-
creased pollution, and declining native and sensitive species (Alberti,

2005; Kaushal et al., 2006; McKinney, 2006).
Given the negative effects of residential development, there is a

growing interest in planning and designing housing to preserve natural
vegetation and ecosystem processes (Pejchar et al., 2015). Even in its
most dense forms, residential development rarely leads to the complete
removal of trees (Nowak et al., 1996; Nowak and Greenfield, 2012),
and forests can remain extensive in areas of low-density housing
(Radeloff et al., 2005b; Theobald, 2010). When forests and housing are
intermingled, forests still provide important ecosystem services such as
water quality, nutrient cycling, wildlife habitat and biodiversity, cli-
mate regulation, and carbon storage, as well as direct health and eco-
nomic benefits to residents (as summarized by Cook et al. (2012)).

While retaining forests in developed areas is thus a land manage-
ment priority, the ways in which residential development alters forest
cover are not well understood. Multiple factors, from the ecoregion to
the individual house, influence forest cover after development. At the
broad scale, mesic ecoregions have greater forest cover in cities than
arid regions (40–60% in mesic, forested ecoregions versus 15–20% in
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desert or grassland ecoregions) (Nowak et al., 1996). Residential de-
velopment, especially low density development, may purposefully be
placed in or near forests to provide homeowners with forest amenities.
As a result, low density housing may initially be associated with sub-
stantial forest cover (Brown, 2003; Turner et al., 2003; Platt et al.,
2011). However, forest cover is generally inversely related to higher
population and housing density (Heynen and Lindsey, 2003; Troy et al.,
2007; Luck et al., 2009), and with a greater proportion of land dedi-
cated to building footprints (i.e., bigger homes relative to parcel size)
(Tratalos et al., 2007; Nielsen and Jensen, 2015; Daniel et al., 2016;
Apparicio et al., 2017).

Forest cover also changes over time in response to landscape and
homesite level ecological processes and management. At the homesite
level, land cover changes after construction, as natural succession oc-
curs and residents plant or remove trees (Matlack, 1993; Kim and Ellis,
2009; McWilliam et al., 2010; Nitoslawski and Duinker, 2016). In
agricultural or grassland sites, residential development may lead to an
increase in forest cover with tree planting and natural succession
(Sharpe et al., 1986; Matlack, 1997; Brown, 2003; Berland, 2012). In
such cases, the regrowth and diversity of forest may be minimal in
comparison to original cover before agricultural clearing (Sharpe et al.,
1986; Fahey et al., 2012). Forests will also not increase indefinitely over
time: in temperate areas forests decline with development, increase
with planting, and then decline with canopy maturation (Troy et al.,
2007; Conway and Bourne, 2013; Grove et al., 2014; Locke et al., 2016;
Pham et al., 2017).

In urban areas the amount of forest cover may also depend on past
and present residents' socioeconomic status, race/ethnicity, education,
and lifestyle factors (e.g., family size, marital status, occupation) (Hope
et al., 2003; Grove et al. 2006, 2014; Luck et al., 2009; Boone et al.,
2010; Schwarz et al., 2015; Apparicio et al., 2017). Greater forest cover
in urban areas is generally associated with socioeconomic advantage as
residents choose to live among more forest cover, advocate for forest
cover on public land, and plant trees themselves (Grove et al., 2006;
Troy et al., 2007). Both formal and informal institutions also influence
residential management and forests (Martin et al., 2004; Troy et al.,
2007; Boone et al., 2010; Roy Chowdhury et al., 2011; Cook et al.,
2012). For example, newer neighborhoods in the southwestern U.S.
have less tree cover because xeric landscaping is now common (Hope
et al., 2003; Martin et al., 2004).

While understanding forest change with development is therefore
complex, the relationships between forest cover and housing have been
most commonly studied in urban areas, often in a single focal urban
area. Emphasis is generally on understanding where forest vegetation is
retained and can be augmented (Nowak et al., 1996; Locke et al., 2010).
In contrast, in exurban and rural areas research focuses on documenting
forest loss across landscapes (e.g., Hansen et al., 2005), with less em-
phasis on parcel-level management, and relationships between forest
cover and socioeconomic/lifestyle factors. Forest cover over landscapes
and across a range of housing densities is rarely investigated (Bar-
Massada et al., 2014; Van Berkel et al., 2018).

In response to this research gap we conducted a study of forest cover
and residential development across multiple ecoregions in the U.S.,
over a wide range of residential densities, removed from urban cores.
Our first goal was to examine how forest cover varies between areas
with residential development and areas without, to identify if housing is
associated with more or less forest cover. We then compared forest
cover in areas of recent residential development to areas that remain
undeveloped. Recent development does not allow time for the effects of
resident management (augmenting or removing forest) to materialize,
and therefore reflects site selection and initial clearing during devel-
opment, allowing us to determine if forested areas are preferred for and
retained following development. We then examined how housing
density, housing age, and household income combined to influence
forest cover. Based on prior research, we expected forest cover to be
inversely related to higher housing density, demonstrate a quadratic
relationship with housing age, and be positively related to household
income.

2. Materials and methods

2.1. Study areas

We analyzed forest cover and residential development in six pro-
vince-level ecoregions (Bailey, 1995) in three states (New York, Wis-
consin, and Colorado), forming eight unique combinations of state and
ecoregion, which we termed study areas (Table 1). We refer to each
study area using a combination of state abbreviation and ecoregion
name. These states and their ecoregions encompass a range of land use
and development histories, and include both native grasslands (eastern
CO), savannas (southern WI), and forested ecosystems (western CO, NY,
northern WI).

We excluded the areas with highest housing densities (≥250
housing units (hu)/km2), found only in urban cores (Fig. 2), in order to
focus on areas where development does not preclude forest cover re-
maining, as measured by moderate resolution remotely sensed imagery.
Here, we briefly describe climate, vegetation, and land cover/land use
for each ecoregion and state. We present more on housing character-
istics of each study area in our results (see below).

New York State has four main ecoregions (Table 1, Fig. 1). The
Laurentian Mixed Forest ecoregion is characterized by rolling hills.
Average annual precipitation is moderate, and long winters and a short
growing season restrict agriculture. Vegetation is transitional between
boreal forest and broadleaf deciduous forest, and is composed of de-
ciduous trees, conifers, and mixed stands (Bailey, 1995). The Eastern
Broadleaf Forest (Continental) ecoregion is also characterized by de-
ciduous broadleaf forests, rolling to flat topography, and a continental
climate. Along the coast, the Eastern Broadleaf Forest (Oceanic) ecor-
egion is characterized by variable topography, including coastal plains,
and a continental climatic regime. Vegetation includes temperate de-
ciduous forest including northern hardwoods, Appalachian oak, and
oak-pine forest. The Adirondack-New England Mixed Forest-Coniferous

Table 1
Study area names, state, ecoregion, and land cover/land use within study areas (from NLCD, 2006) for all PBGs except those with housing densities > 250 hu/km2.

Study area State Ecoregion full name (province level) Area (km2) % Forest % Shrub, Grass,
Wetlands

% Urban % Agri-
culture

% Nonveg (barren,
water)

CO-Grass Colorado Great Plains-Palouse Dry Steppe 116,712.9 2.5 66.0 3.5 27.5 0.4
CO-Forest Colorado Southern Rocky Mountain Steppe-Open Woodland-

Coniferous Forest-Alpine Meadow
114,235.4 53.1 38.8 1.2 3.4 3.5

NY-Adiro New York Adirondack-New England Mixed Forest-Coniferous
Forest-Alpine Meadow

34,859.4 79.0 12.9 2.2 5.0 1.0

NY-Conti New York Eastern Broadleaf Forest (Continental) 20,151.0 31.1 16.6 8.1 43.3 0.9
NY-Laure New York Laurentian Mixed Forest 47,592.4 52.7 11.7 4.9 30.1 0.6
NY-Oceanic New York Eastern Broadleaf Forest (Oceanic) 18,292.3 42.9 11.9 15.6 27.8 1.8
WI-Conti Wisconsin Eastern Broadleaf Forest (Continental) 64,459.7 26.5 10.4 7.7 54.9 0.6
WI-Laure Wisconsin Laurentian Mixed Forest 77,477.1 47.0 22.3 5.1 24.9 0.7

M.H. Mockrin et al. Journal of Environmental Management 234 (2019) 464–475

465



Forest-Alpine Meadow ecoregion is characterized by glaciated moun-
tains and plateaus and continental climate with year-round precipita-
tion. Vegetation is a transition between boreal spruce-fir forest to the
north and the deciduous forest to the south (Bailey, 1995). European
settlement starting in the 17th century began an intense period of forest
clearing for agriculture, timber harvesting, and other development, but
starting in the late 1880s agriculture began to expand westward, and
reforestation began (Irland, 1999). In New York today, forest cover is
extensive in the NY-Adiro and NY-Laure study areas, while agriculture
is widespread in the NY-Conti and NY-Laure study areas (Table 1,
Fig. 1).

Wisconsin was part of the initial expansion of agriculture and timber
harvesting in the Midwest. The northern part of the state falls into
Laurentian Mixed forest ecoregion (WI-Laure; ecoregion described
above) and was heavily logged between 1830 and 1930, after which
forests began to regrow (Hammer et al., 2009). Today, forest land cover
is widespread (Fig. 1). Southern Wisconsin, which falls into the Eastern
Broadleaf (Continental) ecoregion (WI-Conti; ecoregion described
above), was originally a mix of savanna, forest, and grasslands, but was
extensively cleared for agriculture, which remains a predominant land
use today (Rhemtulla et al., 2009). Among all our study areas, WI-Conti
has the largest proportion of agriculture and the second lowest amount
of forest cover (Table 1).

Colorado consists primarily of two ecoregions (Fig. 1). The western
half of the state is forested, within the Southern Rocky Mountain
Steppe-Open Woodland-Coniferous Forest-Alpine Meadow ecoregion
(CO-Forest), a mountainous region with a temperate semiarid climate,
but higher precipitation at higher elevations. At lower elevations pine,
Douglas-fir, lodgepole pine, and aspen are common, while at higher
elevations spruce and fir are common, followed by alpine tundra

(Bailey, 1995). Eastern Colorado falls within the Great Plains-Palouse
Dry Steppe ecoregion (CO-Grass). In the rain shadow of the Rocky
Mountains, climate is semiarid continental. Vegetation is shortgrass
prairie, with scattered trees and shrubs (Bailey, 1995). Similar to the
other states in our study, Colorado experienced a period of extensive
logging and grazing in forested areas in the mid to late 1800s (Fornwalt
et al., 2009). In eastern Colorado, row crops and managed grazing
largely replaced native vegetation by the 1950s (Chase et al., 1999).
Today forest cover is extensive in CO-Forest, but rare in CO-Grass
(Table 1, Fig. 1). In comparison to WI and NY, residential development
is a newer phenomenon in CO, and has increased dramatically since the
1970s, particularly along the Colorado Front Range, where the CO
Forest and CO Grass ecoregions meet (Leinwand et al., 2010).

2.2. Data sources and exploratory analyses

We used Census data from the 2000 Decennial Census to calculate
housing densities (hu/km2) and median housing age for each partial
block group (PBG), for each study area. For large landscapes of interest,
Census data provide the most reliable and extensive information on
housing. We used year 2000 data because the long-form Census data
collection from this date allowed us to calculate age of housing at the
PBG level, which is a relatively fine spatial scale. PBGs represent sub-
divisions of block groups into smaller spatial units based on the
boundaries of incorporated places, legal and census-designated county
subdivisions, and rural/urban areas (Hammer et al., 2004). Using PBGs
as our units of analysis maximized variations in housing density be-
tween PBGs and minimized within PBG variation (Hammer et al.,
2004). We derived housing density from counts of housing units and
PBG size, and calculated median housing age based on answers to the

Fig. 1. NLCD land cover classes by study area for A. Colorado, B. Wisconsin, and C. New York.
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2000 census long-form question “In what year was this housing unit
built?” (U.S. Census Bureau, 2002). Age on housing data is reported
only back to 1940, so the maximum median housing age was 60 years,
with earlier housing (> 60 years) coded as 61 years.

We used U.S. Department of Housing and Urban Development's
calculations of percent of households with low and moderate income
per PBG (data from the 2000 census) (HUD, 2013). Social character-
istics influencing forest cover are varied, and extend beyond income
(e.g., residents' life stage or lifestyle), but household income was the
best variable available at the PBG level. Thresholds used to determine
low and moderate income were calculated by HUD, and varied at the
county level for the states in this study (county-level upper limits for
moderate income ranged from $34,500-$51,600 in NY, $37,350-
$50,050 in WI, and $36,900-$52,150 in CO) (HUD, 2007). We used the
year 2006 National Land Cover Data (NLCD) from the US Geological
Survey to calculate percent of each PBG that was forested (Fry et al.,
2011). NLCD data are generated from 30-m x 30-m pixel Landsat sa-
tellite data. Because of their moderate resolution, NLCD tends to
overestimate tree canopy in areas of low housing density, essentially
missing the footprint of development, but underestimate tree canopy
where residential development is high, because small patches of forest
are missed (Smith et al., 2010; Gray et al., 2013). We excluded the PBGs
with housing densities> 250 hu/km2, found only in urban cores, in
order to focus on areas where development does not preclude forest
cover remaining (Fig. 1). Average percent forest cover for the PBGs
excluded ranged from 0.1% in CO-Grass to 15.1% in NY-Adiro.

2.3. Statistical analyses

All statistical analyses were conducted separately for each study
area (Table 1, Fig. 1). We used descriptive and exploratory analyses to
examine univariate spatial autocorrelation in housing density, age, and
forest cover (Table 2). We used Moran's I test for autocorrelation with a
first-order queen-based contiguity matrix (any PBGs sharing edges or
corners were defined as neighbors) (Table 2). After determining that
spatial autocorrelation was present (Table 2), we used a modified t-test
of spatial association, in the “SpatialPack” package in R (Osorio and
Vallejos, 2014) to compare a) areas without residential development to
areas with residential development, and b) areas without residential
development to those with recent development (median housing
age≤ 20 years). Note that areas without residential development may
still have ‘urban’ land cover (e.g., commercial development, roads).

For multivariate analyses we used regression analysis, and model-fit
diagnostics to determine the most appropriate model, estimating forest
cover as a function of housing density, median housing age, the quad-
ratic form of median housing age (hereafter median housing age2), and
percent of households with low-moderate income. Each independent
variable was standardized as grand mean-centered, with housing den-
sity logged first to meet normality assumptions. We first applied or-
dinary least squares regressions to examine initial relationships in the
data, without including spatial dependence, using the dredge() function
in the R package “MuMIn” (Bartoń, 2016) to test all possible combi-
nation of variables. We chose a best OLS model by ranking AIC scores,
and examined variables retained for collinearity using variance infla-
tion factors. We then used spatial autoregressive regression (SAR) be-
cause the Moran's I values calculated from OLS models' residuals

Fig. 2. Housing density per PBG for A. Colorado, B. Wisconsin, and C. New York and median housing age per PBG for D. Colorado, E. Wisconsin, and F. New York.
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showed significant spatial autocorrelation (Tables 2 and 3). All SAR
models included the same final variables as the best OLS models, and
we estimated them using the “spdep” package in R (Bivand et al., 2013;
Bivand and Piras, 2015), with the same spatial weight matrices.

We used LaGrange spatial diagnostics, AIC scores, and likelihood
ratio tests to compare different SAR models (i.e., spatial error, spatial
lag, and Durbin) for all study areas (Anselin, 2005, p.198–200). Spatial
error models include a spatial autoregressive error term to represent
unmeasured variables that are spatially autocorrelated, while in spatial
lag models the dependent variable is spatially autocorrelated. The
spatial Durbin model is an extension of the lag and error models that
combines a spatial error term with spatially lagged independent vari-
ables. As nested models, the Durbin models can be compared to either
error or lag models using a likelihood ratio test (LeSage and Pace, 2009;
Elhorst, 2010). We then calculated Moran's I for residuals of SAR
models, to determine if including the spatial model had successfully
accounted for spatial autocorrelation (Anselin, 2005, p. 211).

In cases where the best fitting model included the spatial lag of the
dependent variable (spatial lag or Durbin models), the magnitude, di-
rection, and significance of the model coefficients do not fully reveal
variables' relationships (LeSage and Pace, 2009; Elhorst, 2010).
Therefore, we used Monte Carlo simulation to obtain distributions of
the direct, indirect, and total effects of change in variables, along with
Z-scores and a measure of significance (p-value), through the impacts()
function in the “spdep” package (Bivand et al., 2013; Bivand and Piras,
2015). Direct effects are those changes that occur when a change in a
predictor variable in a sampling unit (in our case, PBG) corresponds to a
change in the dependent variable in that unit (this also includes any
feedback effects/spatial lags, when changes in the predictor variable
affect neighboring observations and then the original unit). Indirect
effects are a measure solely of those “spill-overs”, when changes in a

predictor variable of a particular unit (PBG) correspond with changes in
the dependent variables of other units. The combination of both these
effects is the total impact (LeSage and Pace, 2009; Elhorst, 2010).

Global spatial models—lag, error, and Durbin—do not consider
spatial heterogeneity (non-stationarity). For example, the relationship
between X and Y can be positive in one part of a study area and ne-
gative in another. Statistically significant Koenker (BP) statistics and
spatial autocorrelation of OLS residuals led us to explore geographically
weighted regression (GWR), to examine variation in the relationships
between predictors and forest cover within study areas. Separate re-
gression equations are run for each observation, using a spatial kernel
that centers on a given point and weights observations subject to a
distance decay function. GWR results identify areas where locally
weighted regression coefficients diverge from their respective global
estimates (Brunsdon et al., 1996; Fotheringham et al., 1998). We used
the gwr.sel() and gwr() functions in the “spgwr” package (Bivand and
Yu, 2015) to select bandwidths, and fit the GWR models, respectively.
We used the adaptive kernel function with a Gaussian spatial weight
kernel to search for an optimal bandwidth. Cross-validation mini-
mization provides a way of choosing bandwidth that makes an optimal
tradeoff between bias and variance (generally, more variance will lead
to a smaller bandwith selected) (Cleveland and Devlin, 1988). We then
mapped individual model parameters' statistical significance over each
study area.

3. Results

3.1. Descriptive statistics

Study areas varied in housing characteristics and land cover
(Table 1, Table 2). Average percent forest cover per PBG ranged from

Table 2
Summary statistics and global Moran's I and significance for land cover, housing, and household income at the PBG level, for all PBGs with housing densities ≤250
hu/km2 (n= 8 study areas).

CO Forest CO-Grass NY Adiro NY Conti NY-Oceanic NY-Laure WI Conti WI-Laure

n PBGs (< 250 hu/km2) 903 784 455 1266 2024 1941 3806 2319

Size PBG
(km2)

Average 97.9 111.6 65.5 14.7 21.7 8.9 15.2 28.1
St. dev 280.1 320.8 101.6 20.6 27.9 16.2 24.6 39.7
CV 286.3 287.4 155.1 140.3 128.4 182.7 161.6 141.5
Min 0.02 0.02 0.02 0.01 0.0 0.0 0.0 0.0
Max 2669.9 3128.6 965.4 131.8 223.4 187.7 150.6 374.1

Percent forest Average 33.1 2.4 63.9 25.9 42.8 40.1 20.5 35.3
St. dev 31.1 8.4 24.7 17.3 23.8 23.8 18.5 24.4
CV 93.8 355.3 38.7 66.7 55.7 59.3 90.5 69.1
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 98.4 83.8 98.3 90.7 96.8 97.1 90.1 100.0
Moran's I* 0.6 0.6 0.6 0.6 0.5 0.5 0.6 0.7

Housing
density (/km2)

Average 63.1 54.6 38.3 72.5 53.5 93.6 46.6 29.9
St. dev 74.2 71.7 59.6 74.1 67.1 72.5 65.5 51.5
CV 117.5 131.3 155.5 102.3 125.5 77.5 140.7 171.9
Min 0.0 0.0 0.2 0.7 0.3 1.0 0.3 0.1
Max 249.6 249.9 248.6 248.3 249.5 249.8 249.8 249.7
Moran's I* & 0.4 0.4 0.4 0.4 0.3 0.3 0.5 0.4

Median
housing
age (yrs)$

Average 23.7 28.8 36.8 37.8 37.9 35.1 34.6 33.1
St. dev 14.5 17.5 13.4 14.8 14.1 13.2 16.3 14.8
CV 61.2 60.6 36.4 39.1 37.3 37.7 47.1 44.6
Min 5.0 5.0 8.0 5.0 5.0 5.0 5.0 5.0
Moran's I* 0.2 0.4 0.2 0.2 0.1 0.2 0.2 0.3

Low & mod. Income percent households Average 32.0 36.4 39.7 35.7 39.5 29.6 33.0 39.0
St. dev 25.2 27.2 15.5 20.5 20.0 19.2 22.9 21.1
CV 78.6 74.7 39.0 57.5 50.7 65.0 69.3 54.2
Min 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Max 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Moran's I* 0.1 0.3 0.1 0.2 0.1 0.2 0.1 0.1

* All global Moran's I significant p < 0.0001.
& With logged values.
$ All with the same maximum of 61 (60 + years).
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2.4% in CO-Grass to 63.9% in NY-Adiro (Table 2). Among study areas,
WI-Laure and NY-Adiro had the lowest average housing densities per
PBG (Table 2), and NY-Conti and NY-Oceanic the highest. Median
housing ages in the study areas in New York and Wisconsin were on
average a decade older or more than in Colorado (Table 2). Maps and
Moran's I tests revealed that all study areas had significant positive
spatial autocorrelation (p≤ 0.001) for percent forest cover, housing
density, housing age, and household income (Table 2).

3.2. Statistical analyses

Spatial t-tests demonstrated that PBGs with residential development
had statistically significantly higher average percent forest cover than
PBGs without residential development for most study areas (Fig. 3,
Supplemental Table 1) (but not in CO-Forest and WI-Laure). We then
compared areas without housing to those recently developed (median
housing age≤ 20 years). PBGs with recent development had sig-
nificantly greater forest cover than areas without housing in most study
areas, suggesting that forested areas were preferentially developed in
recent decades (but not in NY-Adiro, CO-Forest, and WI-Laure) (Fig. 3,
Supplemental Table 1). The most heavily forested study area, NY-Adiro,
was the only study area where areas with housing did have greater
forest cover than areas with no housing, but not for areas with recently
developed housing in comparison to no housing (Fig. 3, Supplemental
Table 1).

For multivariate analyses, all OLS models had significant auto-
correlation in residuals and Moran's I values greater than 0.5
(p≤ 0.001), as well as higher AIC scores than SAR models, so we re-
stricted our interpretations to the SAR models (Tables 3 and 4).

Variance inflation factors indicated that predictor variables were not
significantly correlated in any study area (VIF < 2) (O'Brien, 2007),
except where median housing age and median housing age2 were re-
tained in final models (Table 5). Although these variables are correlated
by their construction, we retained both to examine the shape of the
relationship between forest cover and housing age. The best-fitting SAR
models were Durbin models for all study areas except CO-Grass where a
spatial lag model fit best (Table 3). For the CO-Forest, CO-Grass, NY-
Adiro, and NY-Conti models the SAR models successfully removed
spatial autocorrelation in the residuals (Table 3). For the remaining
study areas, the SAR models had small but statistically significant
spatial autocorrelation in residuals (Table 3).

3.2.1. Housing density
Housing density was consistently retained in SAR models, with

significant, negative relationships with forest cover (Table 4), with the
exception of CO-Grass study area, the only area that is not naturally
forested. Total impacts are the measure of average change seen in local
observations' dependent variable (percent forest cover) with a one-unit
difference in the predictor variable. For study areas where total impacts
were significant, a one-unit difference from the mean-centered log
housing density resulted in 17.4%–5.4% difference in forest cover
(Table 4). For example, in CO-Forest, with the largest total impact es-
timate, 90% less housing density than the mean (from 63 hu/km2 to 6.3
hu/km2) resulted in 17.4% more forest cover (multiplying the total
impact of −17.4 by log(0.1) gave the difference in percent forest cover
with a 90% decrease in housing). Conversely, a housing density 90%
above the mean (from 63 hu/km2 to 119.7 hu/km2) resulted in −4.9%
less forest cover (−17.4*log(1.9) = -4.9). For NY-Conti, the study area

Table 3
Spatial models of percent forest cover as a function of housing density, housing age, and household income at the PBG level, for study areas (n = 8). *p < 0.05;
**p < 0.01; ***p < 0.001.

CO-Forest CO Grass NY-Adiro NY-Conti

Type of model OLS Durbin OLS Lag OLS Durbin OLS Durbin

Coefficients (direct/main effects):
Housing density (/km2) −12.9*** −9.9*** −0.7* −0.3 −11.5*** −13.1*** −3.4*** −2.5***
Median housing age (yrs) −1.2*** −0.3 35.3*** 15.6*** 6.7** 4.4*
Median housing age2 (yrs) −36.7*** −14.4*** −7.5** −5.4**
Percent low and mod. income (household) −3.6*** −1.7**
Intercept 33.1*** 8.0*** 2.4*** 0.6** 63.9*** 23.1*** 25.9*** 7.8***
AIC 8572 7935 5551 5072 3933 3721 10,744 10,067
R2/Pseudo-R2 0.17 0.61 0.02 0.47 0.37 0.67 0.05 0.45
Moran's I of residuals 0.63*** −0.03 0.59*** −0.02 0.57*** 0.002 0.57*** −0.04
Lambda 0.73*** 0.72*** 0.63*** 0.69***
Lag (indirect effects):
Housing density (/km2) 5.1*** 9.9*** 0.9
Median housing age (yrs) 24.1** −0.5
Median housing age2 (yrs) −27.6*** 1.7
Percent low and mod. income (household) −1.4

NY-Oceanic NY Laure WI-Conti WI Laure

Type of model OLS Durbin OLS Durbin OLS Durbin OLS Durbin

Coefficients (direct/main effects):
Housing density (/km2) −9.9*** −7.2*** −9.5*** −9.8*** −5.4*** −2.6*** −9.5*** −4.5***
Median housing age (yrs) 8.5*** 4.8** 8.0** 4.6* 1.8 2.1* 6.2** 0.4
Median housing age2 (yrs) −9.4*** −6.1*** −10.8*** −5.4** −4.6*** −3.4*** −13.9*** −3.5**
Percent low and mod. income (household) −1.5** −0.4 −1.3** −1.0** 0.8** −0.3 2.9*** −0.5
Intercept 40.2*** 14.8*** 42.8*** 12.5*** 20.5*** 5.7*** 35.3*** 37.9***
AIC 17,365 16,468 18,067 16,891 32,475 30,480 20,289 18,625
R2/Pseudo-R2 0.18 0.51 0.21 0.57 0.09 0.49 0.24 0.70
Moran's I of residuals 0.47*** −0.04* 0.59*** −0.05** 0.52*** −0.03** 0.63*** −0.03*
Lambda 0.62*** 0.70*** 0.70*** 0.70***
Lag (indirect effects):
Housing density (/km2) 1.6* 6.7*** −0.2 0.8
Median housing age (yrs) 1.9 2.9 −2.2 2.4
Median housing age2 (yrs) −0.6 −3.9 0.7 −3.3
Percent low and mod. income (household) −1.2 0.7 1.3** 3.1***
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with the smallest total impact estimate, 90% below the mean housing
density (from 72.5 hu/km2 to 7.3 hu/km2) resulted in 5.4% more forest
cover, while housing density 90% above the mean (from 72.5 hu/km2

to 137.8 hu/km2) resulted in −1.5% less forest cover.
We used GWR models (Table 5) to examine local variation in re-

gression coefficient values predicting forest cover, and where these
relationships diverged from global models (Table 5, Supplemental
Figs. 1–4). Negative, statistically significant relationships between
forest cover and housing density were largely confirmed by GWR
models: for five study areas, more than half of individual PBGs
(often > 80%) fit this pattern (Table 5). No PBGs had a positive and
significant relationship between housing density and forest cover
(Table 5). GWR results for the CO-Grass study area also agreed with the
global OLS model and SAR model results, showing minimal statistically
significant relationships between housing density and forest cover.

However, for the NY-Conti and WI-Conti study areas, negative

significant relationships between forest cover and housing density were
not as widespread. Here, only 21% and 32% of PBGs respectively had
negative, significant relationships between housing density and forest
cover, while in the WI-Conti study area, 8% of PBGs had a positive,
significant relationship between forest cover and housing density
(Table 5). Maps of local GWR relationships can also reveal if there are
spatial patterns in the distribution of such local departures from global
models. In the NY-Conti study area, PBGs with a negative, significant
relationship between housing density and forest cover were con-
centrated in the eastern and western edges of the study area, including
around Buffalo (Supplemental Fig. 1). In WI-Conti, the PBGs with ne-
gative, significant relationships between housing density and forest
cover were concentrated in the west, removed from the urban areas
(Madison, Milwaukee) (Supplemental Fig. 1).

Fig. 3. Percent forest cover per PBG for A. All residential development vs. no residential development and B. Recently developed housing (<=20 years median
housing age) vs. no residential development.
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3.2.2. Housing age
Housing age was retained in best-fitting models for all study areas

except CO-Forest (Table 3), but only had significant total impacts in
four study areas: NY-Conti, NY-Laure, WI-Conti, and WI-Laure
(Table 4). In the WI-Laure study area, only total impacts of median
housing age2 were statistically significant and negative (Table 4). For
NY-Conti, NY-Laure, and WI-Conti, both median housing age and
median housing age2 had significant total impacts (positive and nega-
tive respectively, Table 4). In each of these study areas median housing
age was positively related to forest cover and median housing age2

negatively related to forest cover, so that lower forest cover was asso-
ciated with older housing (Table 4). For the study areas with statisti-
cally significant total impacts (NY-Conti, NY-Laure, WI-Conti, WI-
Laure), GWR results were consistent with SAR models (significant PBGs
were either positively or inversely related, the same as SAR model
coefficients and total impacts) (Table 5). GWR results showed that
significant relationships were limited in space, however. For example,
no more than 27% of PBGs for a study area had significant local re-
lationships between forest cover and median housing age or median
housing age2 (Table 5). There were no clear spatial patterns in the
distribution of PBGs with significant relationships (Supplemental
Figs. 2 and 3).

3.2.3. Household income
Household income was retained in final models for five study areas

(Table 3), but had statistically significant total impacts only in four
study areas (Table 4). For CO-Forest and NY-Oceanic higher percen-
tages of households with low and moderate income were significantly
negatively related to percent tree cover, suggesting that less income was
associated with less forest cover (Table 4). In contrast, in the two WI
study areas, there was a positive, significant relationship between
percent households with low and moderate income and forest cover, so
that less income was associated with greater forest cover (Table 4).
GWR results revealed limited local relationships between income and
forest cover. For the five study areas where income was retained in the
final model only 26% or fewer of PBGs had statistically significant re-
lationships between forest cover and income. (Table 5). For CO-Forest,
the locally significant relationships revealed by GWR were primarily
negative, in agreement with the global SAR model (Tables 4 and 5). In
the other study areas there were both locally significant positive and
negative relationships, with more PBGs with negative local relation-
ships than positive ones. In each study area, PBGs with positive, sig-
nificant relationships between forest cover and income (more forest
cover associated with more households with low to moderate income)
were spatially removed from urban areas, while PBGs with negative
significant relationships between forest cover and income exhibited no
distinctive pattern in their distribution (Supplemental Fig. 4).

4. Discussion

Maintaining forests along with residential development is a priority
for natural resource managers and residents alike. Indeed, across most
of our study areas we found that areas with residential development
had greater or similar forest cover to undeveloped areas, confirming
that areas with residential development retain important forest re-
sources (Radeloff et al., 2005a; Nowak and Greenfield, 2012). However,
this positive relationship can potentially result from the land cover
present during housing establishment, preferential residential devel-
opment in forests, natural succession, management since housing es-
tablishment, or a combination of all three factors (Brown, 2003).

Our analyses comparing recent residential development and areas
that remain undeveloped offer some additional insight, as higher forest
cover in areas of recent development are unlikely to have resulted from
residential management over 20 years or less, but rather from purpo-
seful selection of these forested areas for development. Indeed, five of
our eight study areas conformed to this pattern, suggesting that recent
development occurred preferentially within forested areas. Forests are
often a valued natural amenity, along with other factors such as water,
climate, and access to public lands (McGranahan, 1999; Snyder et al.,
2008; Chi and Marcouiller, 2013). However, for two of our most ex-
tensively forested study areas, CO-Forest and WI-Laure, there were no
significant differences in forest cover between areas with housing and
undeveloped areas, nor between recent residential development and
undeveloped areas. Perhaps forest cover in these study areas is wide-
spread enough that there was no meaningful preference for develop-
ment within forested areas (White and Leefers, 2007; Waltert and
Schläpfer, 2010), or the forest loss that occurred due to development
counteracted such preferential housing site selection. Only in NY-Adiro
was there less forest cover in recently developed areas than un-
developed areas, yet more forest in all residential areas than those
without housing. These differences could have arisen due to past pre-
ferences for forested areas, forest regrowth after development, variation
in housing densities/age/characteristics in the different conditions, or a
combination of these factors.

Our multivariate analyses allowed us to more directly examine the
relative relationships between forest cover and housing and household
variables (housing density, age, and household income). In our seven
forested study areas the most widespread significant relationship was
the anticipated negative, inverse relationship between housing density
and forest cover, similar to other findings, primarily in urban areas
(Cook et al., 2012). Across most of our study areas, this relationship was
robust: the total effects of SAR models and significant relationships in
GWR were consistent, and local relationships were spatially extensive.
However, the effects of housing density changes on forest cover were
relatively modest (e.g., a 50% increase in housing density over the

Table 4
Direct, indirect, and total impact estimates for spatial lag and spatial Durbin models.

CO
Forest

CO
Grass

NY
Adiro

NY
Conti

NY
Ocean

NY
Laure

WI
Conti

WI
Laure

Direct
Housing density (/km2) −10.5*** −0.4 −12.8*** −2.8*** −7.8*** −9.9*** −3.1*** −5.2***
Median housing age (yrs) −0.4 23.2*** 5.1*** 5.9** 6.1** 1.9 1.1
Median housing age2 (yrs) −22.6*** −5.9*** −7.1*** −7.4*** −3.8*** −5.2***
Percent low-mod. income −2.6** −0.7 −1.0*** 0.0 0.3
Indirect
Housing density (/km2) −6.9** −0.7 4.0*** −2.6 −7.1*** −0.5 −6.2*** −10.7***
Median housing age (yrs) −0.8 83.3*** 7.6 12.0* 18.6* −2.2 10.7
Median housing age2 (yrs) −90.1*** −5.9 −10.7 −23.4*** −5.2 −24.5***
Percent low-mod. income −8.9* −3.7* 0.1 3.6*** 11.0***
Total
Housing density (/km2) −17.4*** −1.0 −8.7** −5.4** −14.9*** −10.4*** −9.3*** −15.9***
Median housing age (yrs) −1.2 106.5*** 12.6 17.9* 24.7** −0.3 11.8
Median housing age2 (yrs) −112.7*** −11.8 −17.8* −30.8*** −9.0 −29.7***
Percent low-mod. income −11.5** −4.4* −0.9 3.6*** 11.3***
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mean led to a maximum of 3% decline in forest cover). In addition, two
study areas in the Eastern Broadleaf Forest (Continental) ecoregion, NY-
Conti and WI-Conti, had more restricted local relationships, where
significant, local relationships between forest cover and housing density
were limited in spatial extent, and concentrated around urban areas.

Significant relationships between forest cover and housing age and
household income were more limited. Housing age was significant in
four study areas, all of which showed an inverse relationship with in-
creased housing age and forest cover (even when median housing age2

was retained in models, the size of coefficients meant this was a ne-
gative relationship between age and forest cover). However, GWR re-
sults revealed these relationships were limited in spatial extent (and
without any discernible spatial pattern). This suggests that time since
development is associated with less forest cover, in some areas, al-
though the underlying reason (e.g., degradation associated with re-
sidential use or establishment, past legacies of land use) is unknown.
Our study areas differed from urban areas where housing age is com-
monly related to forest cover through a quadratic relationship (Troy
et al., 2007; Grove et al., 2014; Pham et al., 2017).

Household income similarly was significant in only three SAR global
models. Our findings were as expected only in the CO-Forest and NY-
Laure study areas, with lower income associated with less forest cover,
but we found some evidence of an inverse relationship in the two
Wisconsin study areas (WI-Conti and WI-Laure). In urban areas there
are cases where lower socioeconomic status is associated with more
forest cover, due to either legacy effects or time lags. For example, in
Baltimore, because tree planting had a large impact on forest cover,
vegetation in 2000 reflected the socioeconomic status and preferences
of residents from the 1960s, not present-day residents (Boone et al.,
2010). At larger scales and in less intensively developed settings, it is
less clear why lower socioeconomic status would be associated with
more forest cover. Residents with modest means can be dedicated and
effective forest managers: for example, in a socioeconomically mar-
ginalized region of Ohio small landowners have greatly increased forest
cover after industrial use and forest clearing (Law and McSweeney,
2013). We note also that, much like with housing age, the spatial extent
of significant relationships between household income and forest cover
was limited.

Our findings may have been constrained by a number of aspects of
our modeling inputs. We were restricted to characterizing housing and
households at the PBG scale and using 30-m Landsat data for vegeta-
tion. These are reasonable compromises for the landscape-level ana-
lyses we conducted but we recognize that PBGs necessarily involve
aggregating data on individual homes and parcels, and that 30-m pixel
data are relatively coarse when considering residential landscapes.
Multivariate relationships and overall models were by far the weakest
for the CO-Grass study area, perhaps because the 30-m pixel and PBG
scale were not sufficient to accurately capture forest extent in a native
grassland ecoregion where forest cover is largely the result of tree
planting and management. In addition, the NY-Laure, NY-Oceanic, WI-
Laure, and WI-Conti study areas all had small but statistically sig-
nificant spatial autocorrelation in Durbin model residuals, so that
models may have been compromised by missing variables and/or spa-
tial terms may be incorporating missing variables. We were also limited
to examining only one aspect of the socioeconomic status of present-day
residents, absent data on other variables such as education, race, or
other indicators of lifestyle, for past or present residents. In urban
settings, income may be less important than other socioeconomic
variables e.g. education (Daniel et al., 2016) or lifestyle (Heynen and
Lindsey, 2003; Boone et al., 2010).

Finally, environmental characteristics and land use (including
timber harvesting, on industrial and privately-owned lands) are also
more varied across our large study areas than in relatively small urban
and suburban areas. NLCD defines forest as areas where trees are
generally taller than 5m, and more than 20% of total cover, but actual
forest densities and conditions are variable within this class. Our

analyses examined solely forest presence but future research will re-
quire more data on forest composition, condition, and functioning, over
time, in order to better understand ecosystem processes in suburban
and exurban settings. For example, older residential development may
contain particularly high value forests, with more mature trees and
more native species than recent development (Nitoslawski and Duinker,
2016, Thomas and Gill, 2017). Without temporal data, it is challenging
to understand how natural succession, tree planting, and residential
management together determine forest cover within residential areas.
For example, do residents continue to remove and encroach upon for-
ests around the home (Matlack, 1993) (McWilliam et al., 2010), or
augment forests by planting? Understanding this change in forest cover
around homes after development in forested areas will be vital for fu-
ture research. Although the negative impacts of residential develop-
ment on biodiversity and ecosystem processes are widely recognized,
our study and others demonstrate that areas with homes do maintain
important forest resources.

5. Conclusions

Despite the limitations, our study both confirms the anticipated
relationship between housing density and forest cover, while also de-
monstrating that relationships between forest cover and housing and
household characteristics are different from those found in urban areas.
The effects of housing age and income on forest cover remain unclear,
in contrast to urban settings. With residential development expected to
continue into the future, understanding changing forest cover across
housing densities and by residential age in exurban areas, outside the
typically studied urban areas, will only increase in importance. Urban
areas are relatively small in the U.S. while areas with housing and
forests, as well as low-density housing and forests, are extensive
(Radeloff et al., 2018; Van Berkel et al., 2018). The challenge will be to
recognize the forests not for the trees, but for the houses.
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