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Understanding past and current patterns of species richness is essential for predicting how these patternsmay be
affected by future global change. The species energy hypothesis predicts that higher abundance and richness of
animal species occur where available energy is higher and more consistently available. There is a wide range of
remote sensing proxies for available energy, such as vegetation productivity, but it is not clear which best predict
species richness. Our goal here was to evaluate different proxies for annual plant productivity from Terra and
Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) as input for the Dynamic Habitat Indices
(DHIs), and to determine how well they predict the richness of breeding bird species in six functional guilds
across the conterminous United States. The DHIs are measures of vegetation productivity over the course of a
year and consist of three components: (1) cumulative productivity (DHI Cum), (2) minimum productivity
(DHI Min), and (3) intra-annual variation of productivity (DHI Var). We hypothesized that increases in cumula-
tive and minimum productivity and reductions in intra-annual variation will be associated with higher species
richness. We calculated the DHIs from a range of MODIS 1000-m vegetation productivity data sets for 2003–
2014, i.e., the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Fraction of
absorbed Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), and Gross Primary Productivity
(GPP). We summarized bird species richness of different guilds within ecoregions (n= 85) based on abundance
maps derived from the N3000 routes of theNorth American Breeding Bird Survey for 2006 to 2012. Generally, we
found all the DHIs had high explanatory power for predicting breeding bird species richness. However, the
strength of the associations between the DHIs and bird species richness depended on habitat, nest placement,
and migratory behavior. We found highest correlations for habitat-based guilds, such as grassland breeding spe-
cies (R2

adj 0.66–0.73 for the multiple DHI regression model; R2
adj 0.41–0.61 for minimum DHI) and woodland

breeding species (R2
adj 0.34–0.60 for the multiple DHI regression model; R2

adj 0.26–0.51 for cumulative DHI).
The strong relationship between the DHIs and bird species richness reinforces the importance of vegetation pro-
ductivity as a determinant of species diversity patterns, and the usefulness of satellite data for applying the spe-
cies energy hypothesis to predictions in service to conservation.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Global species richness is declining rapidly (Balmford et al., 2003), a
trend that is likely to continue (Butchart et al., 2010). The major causes
of this decline include land use change (Newbold et al., 2015),
@wisc.edu (M. Dubinin),
as.coops@ubc.ca (N.C. Coops),
A.M. Pidgeon),
fragmentation (Fahrig, 2003), introduction of exotic species (Didham
et al., 2005), and a changing climate (Parmesan, 2006). Predicting future
changes in species richness patterns due to these global anthropogenic
drivers is a major task for ecological research, and urgently needed to
support conservation actions. However, to predict future species loss re-
quires anunderstanding of both current patterns andwhat causes them.
The species energy hypothesis predicts that more species and higher
abundances of individual species will occur where more energy in the
form of food is consistently available (Brown, 1981; Hutchinson, 1959;
Wright, 1983). However, it is challenging to determine the degree to
which empirical evidence supports this hypothesis because consistent,
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accurate species diversity data encompassing broad areas and long time
series is typically lacking (Pereira et al., 2013; Scholes et al., 2012), and
because it is often unclear how to best quantify potential available ener-
gy that species can utilize in the form of food.

Remote sensing data are key to identify what affects distributions of
species, and indices such as vegetation productivity can be measured
across continents from space (Skidmore et al., 2015). Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) data collected by NASA's
Terra and Aqua satellites, provide a host of variables that characterize
available energy and can be used for species diversity assessments at a
range of temporal and spatial resolutions. They include surface reflec-
tance (Vermote et al., 2011), land cover (Friedl et al., 2010), the vegeta-
tion indices Normalized Difference Vegetation Index and Enhanced
Vegetation Index (NDVI and EVI, Huete et al., 2002; Huete et al.,
1999), Leaf Area Index and Fraction of absorbed Photosynthetically Ac-
tive Radiation (LAI and FPAR, Shabanov et al., 2005; Steinberg et al.,
2006) and Gross Primary Productivity (GPP, Running et al., 2004; Tuck
et al., 2014; Zhao et al., 2005).

We investigated the Dynamic Habitat Indices (DHIs) (Berry et al.,
2007; Mackey et al., 2004), which summarize vegetation productivity
over the course of a year, because the DHIs capture seasonal variations
in energy that species can utilize in the form of food. Because the pat-
terns of vegetation productivity, i.e., energy, are linked to the patterns
of species richness (Gaston, 2000), the DHIs are a goodmeasure to char-
acterize the spatial variation of species richness. The DHIs include three
components: (1) cumulative productivity (DHI Cum), because sites
with more available energy are generally more biodiverse, (2) mini-
mum productivity (DHI Min), because sites with high minima are gen-
erally more biodiverse, and (3) seasonality expressed as the coefficient
of variation in productivity (DHI Var), because sites with less intra-an-
nual variability are generally more species rich. The DHIs are strongly
related to diversity patterns of breeding birds in Canada and the US
(Coops et al., 2009a; Coops et al., 2009b; Coops et al., 2009c), tropical
birds in Thailand (Suttidate, 2016), butterflies in Canada (Andrew et
al., 2012), and moose abundance in Canada (Michaud et al., 2014). For
example, the DHIs explained up to 75% of the variation in species rich-
ness of selected ecological groups of breeding birds (functional guilds)
(Coops et al., 2009a). However, previously the DHIs have only been cal-
culated using one of the many MODIS derived proxies for vegetation
productivity, i.e., FPAR. What has been lacking is an evaluation to deter-
mine if FPAR is the most appropriate proxy of vegetation productivity
for the calculation of the DHIs, and howmuch DHIs derived from differ-
ent input data differ both in their spatial patterns and in their predictive
power for bird species richness.

Here, we compared the DHIs resulting from a range of MODIS vege-
tation data sets. NDVI and EVI are both vegetation indices (Huete et al.,
2002), with NDVI being themost basic because it only uses two spectral
bands, yet it has been widely used in biodiversity studies (e.g. Brandt et
al., 2015; Buitenwerf et al., 2015; Coops et al., 2014). However, NDVI
saturates in dense vegetation (Gitelson, 2004; Huete et al., 2002) and
suffers from the inherent nonlinearity of ratio-based indices (Huete et
al., 2002). EVI has greater sensitivity to high biomass than NDVI,
allowing for improved characterization of vegetation productivity
through a canopy background adjustment. EVI is less sensitive to soil
and atmospheric influences than NDVI, because it incorporates the
blue spectral wavelengths and an aerosol reflectance coefficient in its
calculation (Waring et al., 2006).

Both FPAR and LAI data are based on reflectance values of up to
seven MODIS spectral bands using a three-dimensional description of
the vegetation land cover surface (Knyazikhin et al., 1998; Myneni et
al., 2002), and incorporate land cover data (Friedl et al., 2010) in their
calculation. In general, FPAR and LAI provide a closer proxy for vegeta-
tion productivity than NDVI and EVI, because the vegetation indices
are only based on two or three spectral bands. FPAR is a measure of
the proportion of available solar radiation in photosynthetically active
wavelengths that is absorbed by vegetation and varies from 0 on barren
land to 100 in dense vegetation (Myneni et al., 2002). In northern lati-
tudes, the minimum FPAR is hard to detect because it is affected by
snow. LAI defines an important structural property of a plant canopy,
i.e., the one-sided leaf area per unit ground area, but LAI also saturates
(Shabanov et al., 2005).

The most computationally and data intensive MODIS vegetation
product is GPP, which is the total amount of light energy that primary
producers convert into biomass in a given length of time (Heinsch et
al., 2003). GPP is calculated using FPAR and land cover data, combined
with daily meteorological data, and requires several modeling assump-
tions (Running et al., 2004; Turner et al., 2006), making it the most re-
fined of all vegetation productivity data sets of MODIS.

Comparing the proxies of vegetation productivity (NDVI, EVI, FPAR,
LAI and GPP) derived from MODIS in terms of their predictive power
for species richness assessments is important because they range from
basic to complex in their derivation, assumptions, and use of additional
auxiliary data, and because it is unclear if the advantage of higher bio-
logical realism of measures such as GPP is outweighed by the complex-
ity, and hence lower precision, of the models required to derive them.

We applied the different DHIs to predict patterns of bird species
richness. Birds are of conservation concern in the United States with
more than half of North American bird species classified as climate en-
dangered or threatened in this century (Langham et al., 2015). Based
on previous studies, bird species richness is well correlated with the
DHIs derived from MODIS FPAR (Coops et al., 2009a), cumulative pro-
ductivity (DHI Cum) and the seasonal variation in productivity (DHI
Var) being the strongest predictor of bird species richness. Evaluating
variation in species richness and how it relates functionally to patterns
of each DHI provides additional insights into fundamental ecological re-
lationships. For example, according to the species energy hypothesis
there should be an increase in species richness with an increase in pro-
ductivity (Wright, 1983). Ameta-analysis of all taxonomic groups found
both positive linear or unimodal relationships between richness and
productivity being common, but at the broadest scale a unimodal rela-
tionship was more often found (Mittelbach et al., 2001). For birds,
most studies describe the relationship between the vegetation produc-
tivity and species richness as unimodal or positive decelerating reaching
a plateau (Evans et al., 2005; Phillips et al., 2008).

Our first goal was to evaluate the relationships among DHIs derived
from differentMODIS vegetation productivity proxies (NDVI, EVI, FPAR,
LAI and GPP) within the conterminous United States. Our second goal
was to assess the predictive power of the different DHIs to explain spe-
cies richness of different functional guilds, and examine the relative per-
formance of theDHIs derived fromdifferentMODIS vegetation products
for the different guilds. Our third goal was to evaluate the shape of the
relationship between bird species richness and the different DHIs. Com-
bined, these analyses provide guidance on the use of the DHIs derived
from different MODIS vegetation products for evaluating ecological
trends. Based on a review of previous relationships between MODIS
vegetation products and species richness, we predicted that the
MODIS GPP product would have the highest predictive power for bird
species richness, as it is the closest proxy of vegetation productivity
(Table 1).

2. Methods

2.1. Study area and ecoregions

Our study area covers the 48 conterminous states of the USA
(7.8 million km2) and contains 85 ecoregions based on the level III clas-
sification of the US Environmental Protection Agency (http://www.epa.
gov/wed/pages/ecoregions.htm). We chose ecoregions as our sample
units because they denote areas that are generally similar regarding
their environmental characteristics such as topography, geology, soils,
land cover and climate represented by precipitation and temperatures
(Bailey, 1983).

http://www.epa.gov/wed/pages/ecoregions.htm
http://www.epa.gov/wed/pages/ecoregions.htm


Table 1
Different levels of complexity of theMODIS vegetation products and their expected performance as proxies for vegetation productivity to predict ecological trends. References of previous
studies indicate the use of the data sets.

Index Complexity of product Expected performance References of previous studies

NDVI Vegetation index based on two bands (645
nm & 858 nm)

Saturates at high biomass and is therefore insensitive in
these areas. Poor delineation of transition periods between
low and high productivity.

Hurlbert and Haskell (2003), Hurlbert (2004), Hurlbert and
White (2005), Evans et al. (2005), Evans et al. (2006),
Phillips et al. (2008), Phillips et al. (2010), Dobson et al.
(2015), Nieto et al. (2015)

EVI Vegetation index based on three bands (469
nm, 645 nm & 858 nm)

Improvements over NDVI include reduced sensitivity to soil
and atmospheric effects. Lower levels of biomass are more
clearly discriminated. Better lower phenological curve
delineation.

Rowhani et al. (2008), Phillips et al. (2010), Goetz et al.
(2014), Tuanmu and Jetz (2015)

FPAR Index based on up to 7 bands (645 nm, 858
nm, 469 nm, 555 nm, 1240 nm, 1640 nm &
2130 nm). Requires land cover
classification.

Linearly related to biomass change and therefore better
link to productivity than vegetation indices. Good overall
discrimination in cloud-free areas. Some issue when snow
is on ground

Coops et al. (2009a), Coops et al. (2009b), Coops et al.
(2009c), Fitterer et al. (2013)

LAI Index based on up to 7 bands (645 nm, 858
nm, 469 nm, 555 nm, 1240 nm, 1640 nm &
2130 nm). Requires land cover
classification.

Links FPAR and modeling. Less sensitive at higher LAI
levels.

Buermann et al. (2008)

GPP Most refined product using FPAR. Requires
land cover and meteorological data.

Tracks phenology well, but shows artifacts globally. Phillips et al. (2008), Phillips et al. (2010), Hansen et al.
(2011)
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2.2. Data

2.2.1. MODIS data sets
We analyzed MODIS Collection 5 land products from 2003 to 2014.

As input for the DHI calculation we used the suite of vegetation produc-
tivity MODIS products: NDVI, EVI, FPAR, LAI, and GPP in both 8- and 16-
day composites and at 1000-m resolution (Table 2).

2.2.2. Breeding Bird Survey data
The North American Breeding Bird Survey (BBS, http://www.mbr-

pwrc.usgs.gov/bbs) is a large-scale annual bird survey of species occur-
rences observed along ca. 39.4 km routes (Sauer et al., 2014). Volunteer
observers report species and their abundances seen or heard in a 3-min
period at 50 stops along the routes. For certain time steps of several
years the BBS data are summed up and abundancemaps of the breeding
bird species distribution are generated. The relative abundance maps
are based on the raw bird species data collected at the individual routes
and provide descriptive summaries of bird abundance over space. These
abundance maps do not account for observer differences in counting
ability or for other factors such as roadside counting effects, time-of-
Table 2
For the calculation of DHIs we used MODIS vegetation productivity products with a spatial res

Data product Index N

NDVI Normalized Difference Vegetation Index M
EVI Enhanced Vegetation Index M
FPAR Fraction of absorbed Photosynthetically Active Radiation M
LAI Leaf Area Index M
GPP Gross Primary Productivity M

Table 3
Functional guilds used to compile abundancemaps of the Breeding Bird Survey (BBS) to species
exclusive. Since we were not focusing on movement patterns of the birds we included only pe

Functional guild Guilds Short name

All birds All ALL
Breeding habitat Woodland WOOD

Early successional/scrub SUCCESSION
Grassland GRASS

Nest location Ground/low GROUND
Mid-story/canopy CANOPY

Migratory habit Permanent resident PERMANEN

a Note: The abundance maps were only available for a subset of all the birds that have been
day effects, or species-specific effective survey areas (Thogmartin et
al., 2006). However, the raw data is edited to remove observations
that are of questionable quality or represent birds that are migrating
rather than breeding (Sauer et al., 2014).

We distinguished six functional guilds as defined by the BBS (http://
www.mbr-pwrc.usgs.gov/bbs/guild/guildlst.html) (Table 3) based on
their ecology such as the type of vegetationwhere they breed (breeding
habitat), the places where they place their nest (nest location) or their
seasonal movement behavior (migratory habit). A first set of guilds, de-
fined by breeding habitat, included woodland, early successional/scrub
and grassland breeding species, a second set, based on birds' nest place-
ment separated ground/low from mid-story/canopy nesting species,
and the final guild was permanent residents, i.e., birds that do not mi-
grate. Woodland breeding species include those found in savannas
and in forest.

We analyzed 289 species recorded along the BBS routes and summa-
rized the abundance maps from 2006 to 2012 that the BBS provided
(Sauer et al., 2014). During these years, a total number of 3248 routes
were visited. These routes were distributed over the 85 ecoregions
with an average of 38 routes per ecoregion. We generated species
olution of 1000 m and a temporal resolution of 8 or 16 days.

ame Platform Temporal resolution Spatial resolution

OD13A2 Terra 16-day 1000 m
OD13A2 Terra 16-day 1000 m
CD15A2 Combined 8-day 1000 m
CD15A2 Combined 8-day 1000 m
OD17A2 Terra 8-day 1000 m

richnessmapsa. Some speciesmay be included in several guilds since they are notmutually
rmanent residents within the migratory habit functional guild.

N Description

289 North American land birds of all guilds
121 Birds breeding in savannas and forest
85 Birds breeding in early succession or scrubs
27 Birds breeding in grasslands
108 Birds nesting within 1 m of ground
119 Birds nesting N1 m above ground

T 87 Non-migratory birds

recorded on BBS routes.

http://www.mbr-pwrc.usgs.gov/bbs
http://www.mbr-pwrc.usgs.gov/bbs
http://www.mbr-pwrc.usgs.gov/bbs/guild/guildlst.html
http://www.mbr-pwrc.usgs.gov/bbs/guild/guildlst.html
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richness maps from the relative abundance maps for each of the six
guilds, and for all species, for all areas where abundance was mapped
by BBS for a given species.

2.3. DHI calculation

We calculated average DHIs from 2003 to 2014 based on the annual
DHIs. For each MODIS vegetation input data set we calculated the three
DHIs (Fig. 1). Depending on the temporal resolution of the data product
the calculation of the DHI was based on 46 data sets (one for every
8 days for FPAR, LAI and GPP) or 23 data sets (one for every 16 days in
the case of NDVI and EVI). To remove noise due to clouds or haze,we ex-
tracted the associated quality assessment (QA) metadata and applied
two sets of rules to define which pixels to exclude: for FPAR/LAI/GPP
we set the threshold for good pixels to QA b 83, and for the NDVI/EVI
data we only used pixels classified as ‘land’ or ‘ocean coastlines and
lake shorelines’. In addition, for the FPAR/LAI/GPP data, we developed
a mask to set values to zero incorporating perennial snow and ice,
rock, tundra, or desert. Urban/built-up areas, permanent wetlands/in-
undated marshlands as well as perennial salt and inland fresh water
were set to no-data. We marked the same pixels as no-data in NDVI
and EVI data. Lastly, we corrected for missing data due to lack of light
at the start and the end of the season in the northern latitudes, and
we set values to zero for these times, if therewere vegetation productiv-
ity values during mid-season.

Because the DHIs are sensitive to occasional small temporal varia-
tions in theMODIS input data,we derived a single composite phenology
curve from the 12 yearly time series for 2003–2014. For each pixel, we
calculated the median value over the 12 years at each of the time
steps of the MODIS product (8- or 16-day steps). We only calculated
themedianwhere therewere at least three years with valid data, other-
wise the pixel was set to no-data. The resulting single composite phe-
nology curve was then used for DHI calculation. Based on our visual
inspection of the data, this averaging approach resulted in reasonable
phenology curves and we did not need to smooth the data.

2.4. Data visualization and statistical modeling

For visualization, we normalized the different DHIs from 0 to 1. We
also calculated Pearson correlation coefficient among five sets of DHIs
(from NDVI, EVI, FPAR, LAI and GPP, ecoregions as sample units, n =
85) and graphically compared their data ranges.
Fig. 1. Calculation of the three DHIs using productivity (p) at different time periods (t) over the
all the time periods over a year, minimumDHI (DHI Min) where the minimum productivity va
productivity by calculating the coefficient of variation using the standard deviation (σ) and the
of MODIS FPAR data. The number of time periods within a year is 46 for the 8-day products (F
In order to quantify the relationship between the individual DHIs
(DHI Cum, DHI Min and DHI Var) and breeding bird species richness,
we fit regressionmodelswith ecoregions as our sample units.We calcu-
lated for each ecoregion the mean and standard deviation of the three
DHIs as explanatory variables and the mean and standard deviation of
species richness for each guild, as well as for all species combined, as
the dependent variables. Total and mean species richness of ecoregions
were highly correlated (Supplementary material Fig. S1), and so we de-
cided to analyzemean species richness tomatch themean values of the
DHIs by ecoregions, and because the ecoregions differed in size. Addi-
tionally we tested if the standard deviation of species richness within
ecoregions increases with the area of the ecoregion and found no dis-
tinct pattern, so we did not have to correct our models for the size of
the ecoregions (Supplementary material Fig. S2).

Weusedunivariate andmultiple regressionmodels incorporating all
the three DHIs as explanatory variables for bird species richness. For the
multivariate models, we calculated the correlation coefficients among
the individual DHIs entering the model, which were for all the five dif-
ferent input data sets always ≤0.8. For each of these models we param-
eterized and evaluated both a linear and a quadratic fit, because species-
richness productivity relations exhibit sometimes a hump-shaped rela-
tionship (Mittelbach et al., 2001). We decided which type of regression
best fit the data based on a visual inspection of the scatterplots and on
the P-values generated by an analysis of variance (ANOVA). To better
compare the models within a functional guild and DHI type, we opted
for one type of regression (linear or quadratic) within the same group.

To compare the effectiveness of the DHIs derived from different
MODIS vegetation input data sets to predict breeding bird species rich-
ness, we calculated Akaike's Information Criterion (AIC) (Burnham and
Anderson, 2002). We considered models with a difference in AIC b 4 as
competingmodels (Kass and Raftery, 1995). To test for statistical differ-
ences in model performance, we calculated mean and 95%-confidence
intervals of the AIC using a bootstrapping approach, implemented in
the boot package of R (RDevelopment Core Team, 2008), and resampled
3000 times for each model (Canty and Ripley, 2016). However, AIC is
only a measure of relative model strength and does not provide infor-
mation about the overall predictive power of a model. Hence, we addi-
tionally used the root mean square error (RMSE) as an estimate of
model precision, and the adjusted coefficient of determination (R2

adj)
to estimate howmuch variation in the response variable was explained
by the individual models. For the R2

adj we also conducted the
bootstrapping to calculate the mean and 95%-confidence intervals.
course of a year. Cumulative DHI (DHI Cum)where productivity values are summed up for
lue within a year is extracted and variation DHI (DHI Var) indicating the seasonality of the
mean (μ) over a year. Example of threemedian phenology curves calculated from 12 years
PAR, LAI and GPP) and 23 for the 16-day products (NDVI and EVI).
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Using the best model in terms of R2
adj we calculated prediction maps of

species richness by functional bird guild.
We tested spatial autocorrelation by preparing spatial residualmaps

and semivariograms at half-maximum distance for each model. No evi-
dence for autocorrelation was present, but we found large-scale trends
from the Western part to the Eastern part of the US, suggesting that
other environmental factors are also contributing to the spatial pattern.

3. Results

3.1. Dynamic Habitat Indices derived from five MODIS productivity data
sets

The spatial variability in theDHIs reflected the patterns of vegetation
productivity over the conterminous United States (Fig. 2, Supplementa-
ry material Fig. S3). For example, 8-day GPP-derived DHIs showed a
high cumulative DHI (DHI Cum) along the eastern seaboard and the
West Coast, mostly representing the humid temperate and tropical re-
gions with high shares of deciduous, mixed and evergreen forests. In
contrast, areas mainly covered by crops, grassland, and deserts in the
Midwest and the western U.S. showed low cumulative DHI values. The
minimum DHI (DHI Min) was highest in the southern regions as well
as along the coasts, and lowest in the north. Most of the areas with a
low minimum DHI were snow covered in winter, resulting in minimal
vegetation productivity during this time. Low minimum DHI values
Fig. 2. Dynamic Habitat Indices derived from Gross Primary Productivity (GPP) data. (a) cumu
combined DHI where we assigned variation DHI to the red band, cumulative DHI to the gr
transition zones of mixtures of the different DHIs. White regions are no data regions like cities
also occurred in deserts and deciduous forests. The variation DHI (DHI
Var) exhibited a gradient from North to South with high values in the
North and low values in the South. Mapping the combination of the
DHIs helped to visually delineate areaswith similar productivity charac-
teristics over the conterminous United States (Fig. 2d).

The DHIs derived from the five MODIS vegetation productivity data
sets showed different data ranges and had different standard deviations
(Supplementary material Fig. S4). In particular the GPP-derived DHIs
were markedly different from the other four sets of DHIs. The outliers
in the minimum DHI distribution were the two ecoregions in Florida,
the Coast Range ecoregion in the northwestern U.S., and the South Cen-
tral Plains region. The oneoutlierwith high seasonalitywas the Lake Ag-
assiz Plain on the eastern edge of the Great Plains. High variation
occurred mostly in mountainous regions such as the Sierra Nevada,
the Cascades, the Rockies, the Klamath mountains, as well as in the
South Central Plains, the Southeastern Plains, the Mississippi Valley
Loess Plains, and the Middle Atlantic Coastal Plains.

The DHIs derived from the different MODIS input data sets were all
highly correlated, with Pearson's correlation coefficients ranging from
0.69–0.98 (Fig. 3) and scatter plots of the individual DHIs showed
some indication of curvilinear relationships and heteroscedasticity.
The highest correlations occurred between DHIs calculated based on
the more similar inputs and complexity of the product such as LAI ver-
sus FPAR, or EVI versus NDVI. Correlations among the different cumula-
tive DHI were particularly high (≥0.89). Correlations among the
lative DHI (DHI Cum), (b) minimum DHI (DHI Min), (c) variation DHI (DHI Var) and (d)
een band and minimum DHI to the blue band of the image. All the other colors show
and inland water, since the DHI is only meaningful over vegetated areas.



Fig. 3. Scatterplots of the three DHIs (a) cumulative DHI (DHI Cum), (b) minimumDHI (DHI Min) and (c) variation DHI (DHI Var) derived from the 5MODIS vegetation productivity data
sets within the 85 ecoregions. Error bars are standard deviations within ecoregions. Pearson's correlation coefficients (cor) indicate the strength of the relations.
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minimum DHIs were lower (≥0.69), especially the ones of the DHIs de-
rived from data sets of a different complexity level.

No singleMODIS vegetation product consistently resulted in the best
models for all functional guilds, and based on our bootstrapping esti-
mates, there were no statistical differences among the models for each
guilds based on different DHI input data sets (Supplementary material
Figs. S5 and S6). However, total species richness was best explained
by DHIs derived from GPP (Table 4), and this was generally also the
case for the mid-story/canopy nesting, the ground/low nesting and
the early successional/scrub breeding bird guild. Looking at each of
the three individual DHIs, we found that the cumulative DHI derived
from FPAR or LAI performed better for the mid-story/canopy nesting
guild. The cumulative DHI and variation DHI derived from NDVI per-
formed equally well compared to the GPP-derived one for the ground/
low nesting guild. The variation DHI derived from LAI performed better,
and the cumulative DHI andminimumDHI derived from NDVI/EVI per-
formed equally well for the early successional/scrub breeding guild. For
grassland breeding species, DHIs derived from FPAR generally per-
formed the best, for permanent resident birds, DHIs derived from EVI
performed well, and for woodland bird, DHIs derived from LAI
Table 4
Linear regressions between the individual DHIs derived from thedifferent input data and the bre
by ecoregion, ‘all DHIs’ refers to themultiple regression model including all three individual DH
coefficient of determination (R2

adj)were used to comparemodels. The type of regression is indic
performs best within a functional guild, the best model judged by AIC is highlighted in bold; if

Species richness All DHIs mean DHI Cum mean

AIC RMSE R2
adj AIC RMSE R

ALL
NDVI q 673.74 11.59 0.10⁎ q 676.80 12.37 0
EVI q 677.69 11.86 0.06 q 679.26 12.55 0
FPAR q 671.85 11.46 0.12⁎ q 676.63 12.36 0
LAI q 671.95 11.47 0.12⁎ q 675.93 12.31 0
GPP q 659.27 10.64 0.24⁎⁎⁎ q 675.19 12.25 0

WOOD
NDVI q 585.55 6.90 0.50⁎⁎⁎ q 606.87 8.20 0
EVI q 609.86 7.96 0.34⁎⁎⁎ q 615.55 8.63 0
FPAR q 571.19 6.34 0.58⁎⁎⁎ q 592.67 7.54 0
LAI q 566.76 6.18 0.60⁎⁎⁎ q 581.47 7.06 0
GPP q 587.95 7.00 0.49⁎⁎⁎ q 608.97 8.30 0

SUCCESSION
NDVI l 526.35 5.05 0.24⁎⁎⁎ l 537.21 5.51 0
EVI l 514.39 4.70 0.34⁎⁎⁎ l 530.85 5.30 0
FPAR l 520.09 4.86 0.29⁎⁎⁎ l 540.53 5.61 0
LAI l 513.67 4.68 0.34⁎⁎⁎ l 540.11 5.60 0
GPP l 512.88 4.66 0.35⁎⁎⁎ l 534.08 5.41 0

GRASS
NDVI q 382.31 2.09 0.66⁎⁎⁎ q 434.56 2.89 0
EVI q 378.24 2.04 0.67⁎⁎⁎ q 440.75 3.09 0
FPAR q 363.58 1.87 0.72⁎⁎⁎ q 441.36 3.10 0
LAI q 361.29 1.84 0.73⁎⁎⁎ q 445.27 3.17 0
GPP q 372.73 1.97 0.69⁎⁎⁎ q 440.33 3.08 0

GROUND
NDVI q 483.96 3.80 0.28⁎⁎⁎ q 502.28 4.43 0
EVI q 488.40 3.90 0.24⁎⁎⁎ q 506.99 4.55 0
FPAR q 497.52 4.11 0.16⁎⁎ q 507.45 4.57 0
LAI q 493.54 4.02 0.20⁎⁎⁎ q 507.53 4.57 0
GPP q 478.03 3.67 0.33⁎⁎⁎ q 502.57 4.44 0

CANOPY
NDVI q 585.26 6.89 0.14⁎⁎⁎ l 591.37 7.57 0
EVI q 593.20 7.22 0.05 l 593.21 7.65 0
FPAR q 577.16 6.57 0.22⁎⁎⁎ l 587.22 7.39 0
LAI q 580.57 6.70 0.18⁎⁎ l 587.68 7.41 0
GPP q 564.94 6.11 0.32⁎⁎⁎ l 592.94 7.64 0

PERMANENT
NDVI q 503.76 4.26 0.42⁎⁎⁎ l 545.38 5.78 0
EVI q 484.50 3.81 0.54⁎⁎⁎ l 542.15 5.67 0
FPAR q 512.78 4.50 0.35⁎⁎⁎ l 545.64 5.79 −
LAI q 502.57 4.23 0.43⁎⁎⁎ l 543.97 5.73 0
GPP q 505.65 4.31 0.41⁎⁎⁎ l 543.85 5.73 0

⁎ P b 0.05, significant relationship.
⁎⁎ P b 0.01, significant relationship.
⁎⁎⁎ P b 0.001, significant relationship.
performed well. Overall, models based on the cumulative DHI were
least dependent on the MODIS input data sets with many models
performing equally well.

3.2. Relationship of DHI to breeding bird species richness

Average species richness by ecoregion was 80 (ranging from 37 to
107) with substantial differences in the richness patterns of the differ-
ent functional guilds (Supplementary material Fig. S7). Most of the spe-
cies-richness vs DHIs relationshipswere quadratic in shape, however, in
about a third of themodels a linear regression performed best according
to the ANOVA (Table 4, Fig. 4 and Supplementary material Fig. S8).
Based on the best model for each functional guild we predicted species
richness (Fig. 5, Supplementarymaterial S9). For example, for the grass-
land breeding birds predicted with themultivariate model of the FPAR-
derived DHIs (R2

adj 0.72) and the woodland breeding birds predicted
with the multivariate model of the LAI-derived DHIs (R2

adj 0.60), the
models captured the main distribution pattern in species richness well.

The predictive power of the differentDHIs in explaining species rich-
ness was highly dependent on the breeding bird guild (Table 4).
edingbird richnesswithin the six functional bird guilds.We analyzed themean of theDHIs
Is. Akaike's Information Criterion (AIC), root mean square errors (RMSE) and the adjusted
ated by ‘l’ for linear one and ‘q’ for quadratic. To highlightwhich data set for DHI calculation
there are multiple models with ΔAIC b 4, they are highlighted in italic.

DHI Min mean DHI Var mean

2
adj AIC RMSE R2

adj AIC RMSE R2
adj

.02 q 678.18 12.47 0.01 q 670.43 11.91 0.10⁎⁎

.00 q 675.56 12.28 0.04 q 674.55 12.21 0.05⁎

.03 q 679.47 12.56 −0.01 q 672.05 12.03 0.08⁎

.03 q 675.66 12.29 0.04 q 672.64 12.07 0.07⁎

.04 q 660.05 11.21 0.20⁎⁎⁎ q 659.73 11.19 0.20⁎⁎⁎

.33⁎⁎⁎ l 638.36 9.98 0.02 q 635.37 9.69 0.07⁎

.26⁎⁎⁎ l 636.42 9.87 0.05⁎ q 626.48 9.20 0.16⁎⁎⁎

.44⁎⁎⁎ l 633.89 9.65 0.09⁎⁎ q 632.04 9.51 0.10⁎⁎

.51⁎⁎⁎ l 629.47 9.74 0.07⁎⁎ q 621.26 8.92 0.21⁎⁎⁎

.32⁎⁎⁎ l 641.01 10.08 0.00 q 622.27 8.97 0.20⁎⁎⁎

.11⁎⁎⁎ q 545.07 5.70 0.04 l 593.16 5.70 0.05⁎

.18⁎⁎⁎ q 542.76 5.62 0.06⁎ l 531.32 5.32 0.17⁎⁎⁎

.08⁎⁎ q 544.06 5.67 0.05⁎ l 534.84 5.43 0.14⁎⁎⁎

.08⁎⁎ q 544.66 5.69 0.04 l 524.09 5.10 0.24⁎⁎⁎

.15⁎⁎⁎ q 540.44 5.55 0.09⁎⁎ l 542.47 5.68 0.06⁎

.34⁎⁎⁎ q 406.08 2.52 0.53⁎⁎⁎ l 400.00 2.46 0.55⁎⁎⁎

.29⁎⁎⁎ q 401.54 2.45 0.55⁎⁎⁎ l 422.32 2.80 0.42⁎⁎⁎

.28⁎⁎⁎ q 389.59 2.28 0.61⁎⁎⁎ l 389.90 2.31 0.60⁎⁎⁎

.25⁎⁎⁎ q 395.01 2.36 0.58⁎⁎⁎ l 431.10 2.95 0.36⁎⁎⁎

.29⁎⁎⁎ q 424.18 2.80 0.41⁎⁎⁎ l 405.57 2.54 0.52⁎⁎

.07⁎ l 489.75 4.16 0.19⁎⁎⁎ q 483.66 3.97 0.25⁎⁎⁎

.01 l 492.87 4.24 0.16⁎⁎⁎ q 496.47 4.28 0.13⁎⁎⁎

.01 l 499.89 4.42 0.08⁎⁎ q 494.49 4.23 0.15⁎⁎⁎

.01 l 497.23 4.35 0.11⁎⁎ q 500.67 4.39 0.09⁎⁎

.06⁎ l 472.25 3.76 0.34⁎⁎⁎ q 486.48 4.04 0.23⁎⁎⁎

.02 q 595.56 7.67 0.00 q 585.43 7.23 0.10⁎⁎

.00 q 593.93 7.60 0.00 q 587.29 7.31 0.08⁎

.07⁎⁎ q 595.12 7.65 −0.01 q 586.60 7.28 0.08⁎

.06⁎ q 591.79 7.50 0.03 q 584.66 7.19 0.10⁎⁎

.00 q 577.23 6.89 0.18⁎⁎⁎ q 562.61 6.32 0.31⁎⁎⁎

.00 q 529.56 5.20 0.18⁎⁎⁎ l 523.67 5.08 0.22⁎⁎⁎

.03⁎ q 529.61 5.20 0.18⁎⁎⁎ l 504.65 4.55 0.38⁎⁎⁎

0.01 q 536.87 5.43 0.10⁎⁎ l 518.36 4.93 0.27⁎⁎⁎

.02 q 538.83 5.49 0.08⁎ l 505.55 4.57 0.37⁎⁎⁎

.02 q 528.50 5.17 0.19⁎⁎⁎ l 516.91 4.89 0.28⁎⁎⁎



Fig. 4. Relation of bird species richness and the DHIs within the 85 ecoregions, for (a, top row) grassland breeding species in relation to DHI derived from the Fraction of absorbed
Photosynthetically Active Radiation (FPAR), and (b, bottom row) woodland breeding species in relation to DHI derived from Leaf Area Index (LAI).
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Grassland and woodland breeding species were overall best predicted
by the DHIs. The multiple regression model for the grassland guild had
R2

adj values between 0.66 and 0.73 depending on the MODIS input
Fig. 5. Species richnessmaps by ecoregion of (a)woodland and (b) grassland breeding birds com
(BBS) and predicted species richness using (c) LAI-derived DHIs in a multivariate model for th
grassland breeding species. The grey lines indicate ecoregion boundaries.
data, where minimum DHI (R2
adj 0.41–0.61) and the variation DHI

(R2
adj 0.36–0.60) both had relatively high univariate explanatory

power. For woodland birds, the multiple regression model (R2adj 0.34–
piled fromabundancemaps of the individual species providedby theBreedingBird Survey
e woodland breeding species and (d) FPAR-derived DHIs in a multivariate model for the
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0.60) also performed well, however the cumulative DHI (R2
adj 0.26–

0.51) had the highest univariate R2
adj. For the ground/low nesting

birds and for permanent residents, the multiple regression model
(R2

adj 0.16–0.33; R2
adj 0.35–0.54), as well as the minimum DHI (R2

adj

0.08–0.34; R2
adj 0.08–0.19) and variation DHI (R2

adj 0.09–0.25; 0.22–
0.38), performed best. In the case of the early successional/scrub breed-
ing birds, the multiple regression model (R2adj 0.24–0.35) and the vari-
ation DHI (R2

adj 0.05–0.24) performed best. Looking at the mid-story/
canopy nesting guild (R2

adj 0.05–0.32), and at all birds together (R2
adj

0.06–0.24), only the multiple regression model explained a meaningful
portion of the variance in species richness.
4. Discussion

4.1. Dynamic Habitat Indices derived from different MODIS vegetation data

The main goals of our study were to compare the DHIs derived
from five proxies for vegetation productivity (NDVI, EVI, FPAR, LAI,
and GPP), and to evaluate their performance in models explaining
bird species richness. The correlation between the different DHIs
was generally high, with the cumulative DHIs being most strongly
correlated. Correlations between products such as FPAR and LAI, or
EVI and NDVI, were the highest. DHIs derived from GPP were the
least correlated with the other vegetation products. Given that GPP
is the most complex of the evaluated MODIS products and the only
one incorporating meteorological data in its calculation, this
matched our expectations. However, we expected higher correla-
tions between GPP-derived DHI and, for example, the DHI derived
from FPAR, because MODIS FPAR is one of the input data sets used
to calculate MODIS GPP.

The type of MODIS data used to calculate the DHIs greatly affected
the explanatory power of the bird species richness models. Overall,
DHIs derived fromGPP had the strongest relationshipwith species rich-
ness for most functional guilds. GPP performed best for species richness
of all birds, for the two nest location guilds, as well as for birds breeding
in early succession/scrub habitat. This matched prior predictions and
findings that MODIS GPP represents actual primary production best
resulting in stronger relationship of bird diversity with GPP than NDVI
especially for studies with a large gradient in primary productivity
(Phillips et al., 2008). However, we did not find statistical differences
in the models comparing the DHIs derived from different MODIS prod-
ucts, and our expectation thatGPPwould outperform the other data sets
was not fulfilled.

The DHIs derived from LAI were second-best in explaining total
species richness, and the best for woodland breeding species. This
might be the case because LAI describes vegetation canopies, which
is most important in forest and wooded areas, but we are aware
that it is very species-specific which structures of a forest are impor-
tant for a bird. The FPAR-derived DHIs performed best for the grass-
land breeding species, suggesting that FPAR can capture more subtle
differences in photosynthetic activity in grasslands and savannas
(Coops et al., 2009a; Coops et al., 2009b; Coops et al., 2009c). To
date, only FPAR had been used in previous studies to create DHIs
and our results indicate that other MODIS products might be more
predictive.

NDVI and EVI were the MODIS input data that performed least-well
in terms of explaining species richness through their role in DHI. Both
vegetation indices saturate in dense vegetation, and have issues in
areas with bare soil (Huete, 1988). Interestingly, Phillips et al. (2008)
found NDVI, GPP, and NPP to be generally highly correlated. However,
they found a low correlation between NDVI and the productivity mea-
sures GPP and NPP in areas with bare ground or dense forest. We also
observed the saturation effect, for example, in the case of the woodland
breeding species where productivity derived from NDVI reached a
plateau.
4.2. Importance of the individual DHIs to predict breeding bird richness of
different guilds

Cumulative DHI was the most important univariate predictor of the
threeDHIs in explaining the richness ofwoodlandbreeding species. For-
ested ecoregions generally have high vegetation productivity, making
the cumulative DHI a good indicator of these areas. Similarly, cumula-
tive DHI was a good predictor for grassland breeding species. The im-
portance of the cumulative DHI is supported by prior studies. Seasonal
NDVI calculated over the vegetation period explains up to 61% of the
variation in bird species richness within North America (Hurlbert and
Haskell, 2003). In our study, the cumulative DHI alone explained up to
51% of the variation for woodland and up to 29% for grassland breeding
species. However, the species richness of the other functional guildswas
not related to the overall productivity.

Areas with a high minimum productivity, indicated by a high mini-
mum DHI, tend to be species rich, because they provide more resources
for different species throughout the year (Wright, 1983). In a compara-
ble study to ours,minimumNDVI explained up to 75% of total variability
in bird species richness (Nieto et al., 2015).We found theminimumDHI
to be a good predictor of grassland breeding species and to some extent
also for ground-nesting species richness, permanent-resident and suc-
cessional habitat species. Minimum DHI was also the most important
predictor of grassland breeding species in a previous study with FPAR-
derived DHI (Coops et al., 2009a). In that study, minimum DHI was im-
portant for woodland breeding, ground-nesting, mid-story canopy-
nesting species, and for all birds together too, but only for ecoregions
with at least 40% forest cover. This shows the importance of this metric
for forested ecoregions, but across all ecoregions, minimum DHI was
less important.

The variation DHI explained the species richness of several function-
al guilds well, and again, was best for the grassland breeding birds. A
previous study based on FPAR DHI data also found seasonality to be
one of the best variables in explaining species richness (Coops et al.,
2009a). More species tend to occur in more stable environments, be-
cause higher stability means less fluctuation in population size and en-
ables greater niche partitioning leading to higher species richness
(Rowhani et al., 2008). For example, low seasonality is a good predictor
of bird species richness in sub-Saharan Africa (Jetz et al., 2004).

Taken together, our results show that each of the three DHIs is im-
portant, andwhich of themhas the highest explanatory power, depends
on the functional guild. For the woodland breeding species, cumulative
DHI was most predictive. For the grassland breeding species, the mini-
mum DHI and variation DHI had the highest explanatory power for
the ground/low as well as the canopy nesting birds and the permanent
residents. For the early successional/scrub breeding birds, as well as all
birds together, no single DHI performed best and the multiple regres-
sion model including all DHIs wasmost powerful in explaining the var-
iation in bird species richness between ecoregions within North
America.
4.3. Shape of the relationship of DHIs to breeding birds

The shape of the relationship between vegetation productivity and
species richness remains an area of ongoing investigation (Dobson et
al., 2015; Evans et al., 2005; Waide et al., 1999). For birds, most studies
describe the relation between vegetation productivity and species rich-
ness as unimodal or positive decelerating reaching a plateau (Evans et
al., 2005; Phillips et al., 2008). Evans et al. (2005) related species rich-
ness to NDVI in Britain and found for two thirds of the guilds a positive
decelerating species richness-NDVI relationship, while one third of the
species groups exhibited a positive linear relationship. Similar to the
findings of Evans et al. (2005), we found that in one third of the models
linear regression was sufficient. However, in two thirds of the models a
quadratic regression performed better. Additionally, we found that the
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shape of the relationship varied by functional guild of birds and the in-
dividual DHIs, with no general patterns identified.

4.4. Limitations of our approach

When working with BBS data there are some inherent limitations.
First, the BBS is a citizen science data set and depends on the work of
volunteers gathering the data in the field. This means that the routes
are not evenly spaced across the U.S., and that there can be an observer
bias. Also, the amount of routes that were surveyed varied from year to
year. To remedy this issue, we analyzed the abundancemaps, which are
based on data from seven years and are therefore more robust. Similar-
ly, there were some issues with the MODIS data. While calculating the
median phenology curve as a basis for the DHI calculation, we used a
threshold of 3 out of 12 years. This means that there may be small dis-
tortions due to missing data in the averaged phenology curves. Also,
the calculation of all the MODIS data used in this study are to some de-
gree based on theMODIS land cover product, which has some classifica-
tion errors (Friedl et al., 2010), and these errors propagate to theMODIS
vegetation productivity proxies. However, by making ecoregions as our
unit of analysis, these issues were averaged out to some extent.

5. Conclusion

The Dynamic Habitat Indices provide three remote sensing mea-
sures of annual vegetation productivity that are particularly relevant
for species richness assessments because of their ability to characterize
available energy. Here, we calculated the DHIs from five different
MODIS products, all of which are proxies of vegetation productivity
(NDVI, EVI, FPAR, LAI and GPP), and found that despite their origin
from the same satellite instrument, the indices reflected different as-
pects of bird species richness. In general, all DHIs showed a high predic-
tive power for bird species richness of different functional guilds based
on habitat preferences, nest placement andmigratory behavior. Howev-
er differences among DHIs resulting from different MODIS vegetation
products affected their predictive power.

We suggest that future studies should investigate the performance
of the DHI using other examples of biodiversity data. Now that all the
data sets are available globally, they can be used in combination with
other predictor variables such as land cover, topography and climate
in species distribution models to assess the current and also predict
the future spatial distribution of animal species in the context of climate
change. In general, the DHIs show promise for both biodiversity science
and conservation planning, with all data freely available (SILVIS Lab:
http://silvis.forest.wisc.edu/dhi).
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