Oceanic islands are important habitats for many endemic species. Global conservation assessments, however, are too coarse to characterize areas of high human influence or landscape connectivity at a resolution that is useful for conservation planning on most islands. Our goal was to identify landscape elements that are essential for the maintenance of structural connectivity among natural habitat patches on islands. Using the Caribbean island of Puerto Rico as a case study, our specific objectives were to: (1) develop a map of the human footprint, and (2) characterize the connectivity of patches exhibiting low human modification that structurally connect the island’s ecological network. We used the human footprint as a measure of impediments to connectivity among Puerto Rico’s natural areas using network analysis. We found that more than half of Puerto Rico’s current land surface had a low human footprint (56%), but that coastal areas were highly affected by human use (82%). Puerto Rico possesses a compact network of natural areas, with a few patches in the interior mountains critical to structural connectivity. The number of isolated patches is very high; more than 60% of the patches were 2000 m or more apart. Identifying sites that are key hubs to connectivity on islands and ensuring they remain undeveloped is one strategy to balance land use and conservation, and to facilitate the persistence of endemic species. We show here how to improve general conservation assessment methods to be more relevant for islands. There is potential to support an interconnected network of natural areas that promotes landscape connectivity in Puerto Rico among noncoastal habitats, because the human activities are concentrated along the coast whereas the interior mountain range has a relatively low human footprint.
Conservation planning for island nations: Using a network analysis model to find novel opportunities for landscape connectivity in Puerto Rico
Download Guzman-Colon et al_2020_Conservation planning for island nations