Conservation of Forest Birds: Evidence of a Shifting Baseline in Community Structure

Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. However, comparisons of changes in diversity between samples adjacent in time (i.e., successive change) may mask substantial shifts in diversity that occurs over time (i.e., progressive change) when short-term analyses are used to assess change (i.e., shifting baseline syndrome). Our objectives were to determine how forest bird diversity changed over time and whether those changes were associated with forest disturbance. We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the U.S. for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small gains in richness (<1 species per route for the 22-year study period) and modest losses in abundance (-69.7 - -10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for all forest birds as a group, and for Neotropical migrants, permanent residents, and cavity nesting species. We also documented highest progressive similarity in the southern and eastern U.S. Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., ~22 years). Forest disturbance and forest regeneration are primary factors affect contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the U.S. may already exceed the threshold below which forest loss is an important predictor of forest bird community structure.

File: RittenhouseCDetal2010Forestbirdsshiftingbaseline_0.pdf

This is a publication uploaded with a php script

Habitat variables explain Loggerhead Shrike occurrence in the northern Chihuahuan Desert, but are poor correlates of fitness measures

Conservation efforts should be based on habitat models that identify areas of high quality and that are built at spatial scales that are ecologically relevant. In this study, we developed habitat models for the Loggerhead Shrike (Lanius ludovicianus) in the Chihuahuan Desert of New Mexico to answer two questions: (1) are highly used habitats of high quality for shrikes in terms of individual fitness? and (2) what are the spatial scales of habitat associations relevant to this species? Our study area was Fort Bliss Army Reserve (New Mexico). Bird abundance was obtained from 10 min point counts conducted at forty-two 108 ha plots during a 3-year period. Measures of fitness were obtained by tracking a total of 73 nests over the 3 years. Habitat variables were measured at spatial scales ranging from broad to intermediate to local. We related habitat use and measures of fitness to habitat variables using Bayesian model averaging. We found a significant relationship between bird abundance and measures of fitness averaged across nesting birds in each plot (correlation up to 0.61). This suggests that measures of habitat use are indicative of habitat quality in the vicinity of Fort Bliss. Local- and intermediate-scale variables best explained shrike occurrence. Habitat variables were not related to any measures of fitness. A better understanding of the factors that limit individual bird fitness is therefore necessary to identify areas of high conservation value for this species.

File: StLouis-etAl-LandscapeEcology-2010.pdf

This is a publication uploaded with a php script

Modeling regional-scale habitat of forest birds when land management guidelines are needed but information is limited

Conservation planning at broad spatial scales facilitates coherence between local land management and objectives set at the state or provincial level. Habitat suitability models are commonly used to identify key areas for conservation planning. The challenge is that habitat suitability models are data hungry, which limits their applicability to species for which detailed information exists, but managers need to address the needs of all at-risk species. We propose a modeling approach useful for regional-scale conservation planning that accommodates limited species knowledge, and identifies what managers should aim for at the local scale. For twenty at-risk bird species, we built models to identify potential habitat using both literature information and empirical data. Species occupancy within potential habitat depends on the presence of intrinsic elements, which we identified for each species so that managers can enhance these elements as appropriate. For most species, the estimated amount of habitat needed to meet population targets was <10% of the mapped potential habitat, with notable exceptions for Northern Goshawk (Accipiter gentilis; 100%), Brown Thrasher (Toxostoma rufum; 63.7%), and Veery (Catharus fuscescens; 17.9%). Model validation showed that interior forest species models performed best. Our modeling framework allowed us to build potential habitat models to various endpoints for different species, depending on the information available, and revealed a number of species for which basic natural history data are missing. Our potential habitat models provide regional perspective and guide local habitat management, and assist in identifying research priorities.

File: Beaudry-et-al-BioCons-2010_0.pdf

This is a publication uploaded with a php script

Avifauna response to hurricanes: regional changes in community similarity

Global climate models predict increases in the frequency and intensity of extreme climatic events such as hurricanes, which may abruptly alter ecological processes in forests and thus affect avian diversity. Developing appropriate conservation measures necessitates identifying patterns of avifauna response to hurricanes. We sought to answer two questions: (1) does avian diversity, measured as community similarity, abundance, and species richness, change in areas affected by hurricane compared with unaffected areas, and (2) what factors are associated with the change(s) in avian diversity? We used North American Breeding Bird Survey data, hurricane track information, and a time series of Landsat images in a repeated measures framework to answer these questions. Our results show a decrease in community similarity in the first posthurricane breeding season for all species as a group, and for species that nest in the midstory and canopy. We also found significant effects of hurricanes on abundance for species that breed in urban and woodland habitats, but not on the richness of any guild. In total, hurricanes produced regional changes in community similarity largely without significant loss of richness or overall avian abundance.We identified several potential mechanisms for these changes in avian diversity, including hurricane-induced changes in forest habitat and the use of refugia by birds displaced from hurricane-damaged forests. The prospect of increasing frequency and intensity of hurricanes is not likely to invoke a conservation crisis for birds provided we maintain sufficient forest habitat so that avifauna can respond to hurricanes by shifting to areas of suitable habitat.

File: rittenhouse_0.pdf

This is a publication uploaded with a php script

Combined effects of heat waves and droughts on avian communities across the conterminous United States

Increasing surface temperatures and climatic variability associated with global climate change are expected to produce more frequent and intense heat waves and droughts in many parts of the world. Our goal was to elucidate the fundamental, but poorly understood, effects of these extreme weather events on avian communities across the conterminous United States. Specifically, we explored: (1) the effects of timing and duration of heat and drought events, (2) the effects of jointly occurring drought and heat waves relative to these events occurring in isolation, and (3) how effects vary among functional groups related to nest location and migratory habit, and among ecoregions with differing precipitation and temperature regimes. Using data from remote sensing, meteorological stations, and the North American Breeding Bird Survey, we used mixed effects models to quantify responses of overall and functional group abundance to heat waves and droughts (occurring alone or in concert) at two key periods in the annual cycle of birds: breeding and post-fledging. We also compared responses among species with different migratory and nesting characteristics, and among 17 ecoregions of the conterminous United States. We found large changes in avian abundances related to 100-year extreme weather events occurring in both breeding and post-fledging periods, but little support for an interaction among time periods. We also found that jointly-, rather than individually-occurring heat waves and droughts were both more common and more predictive of abundance changes. Declining abundance was the only significant response to post-fledging events, while responses to breeding period events were larger but could be positive or negative. Negative responses were especially frequent in the western U.S., and among ground-nesting birds and Neotropical migrants, with the largest single-season declines (36%) occurring among ground-nesting birds in the desert Southwest. These results indicate the importance of functional traits, timing, and geography in determining avian responses to weather extremes. Because dispersal to other regions appears to be an important avian response, it may be essential to maintain habitat refugia in a more climatically variable future.

File: Albright_et_al_2010_Combined_effects_of_heat_waves_and_droughts_on_avian_communities.pdf

This is a publication uploaded with a php script

Effects of drought on avian community structure

Droughts are expected to become more frequent under global climate change. Avifauna depend on precipitation for hydration, cover, and food. While there are indications that avian communities respond negatively to drought, little is known about the response of birds with differing functional and behavioural traits, what time periods and indicators of drought are most relevant, or how response varies geographically at broad spatial scales. Our goals were thus to determine (1) how avian abundance and species richness are related to drought, (2) whether community variations are more related to vegetation vigour or precipitation deviations and at what time periods relationships were strongest, (3) how response varies among avian guilds, and (4) how response varies among ecoregions with different precipitation regimes. Using mixed effect models and 1989-2005 North American Breeding Bird Survey data over the central United States, we examined the response to 10 precipitation- and greennessbased metrics by abundance and species richness of the avian community overall, and of four behavioural guilds. Drought was associated with the most negative impacts on avifauna in the semiarid Great Plains, while positive responses were observed in montane areas. Our models predict that in the plains, Neotropical migrants respond the most negatively to extreme drought, decreasing by 13.2% and 6.0% in abundance and richness, while permanent resident abundance and richness increase by 11.5% and 3.6%, respectively in montane areas. In most cases, response of abundance was greater than richness and models based on precipitation metrics spanning 32-week time periods were more supported than those covering shorter time periods and those based on greenness. While drought is but one of myriad environmental variations birds encounter, our results indicate that drought is capable of imposing sizable shifts in abundance, richness, and composition on avian communities, an important implication of a more climatically variable future.

File: AlbrightetalGCB2010.pdf

This is a publication uploaded with a php script

Variability in energy influences avian distribution patterns across the USA

Habitat transformations and climate change are among the most important drivers of biodiversity loss. Understanding the factors responsible for the unequal distribution of species richness is a major challenge in ecology. Using data from the North American Breeding Bird Survey to measure species richness and a change metric extracted from the MODerate resolution Imaging Spectroradiometer (MODIS), we examined the influence of energy variability on the geographic distribution of avian richness across the conterminous U.S. and in the different ecoregions, while controlling for energy availability. The analysis compared three groups of birds: all species, Neotropical migrants, and permanent residents. We found that interannual variability in available energy explained more than half of the observed variation in bird richness in some ecoregions. In particular, energy variability is an important factor in explaining the patterns of overall bird richness and of permanent residents, in addition to energy availability. Our results showed a decrease in species richness with increasing energy variability and decreasing energy availability, suggesting that more species are found in more stable and more productive environments. However, not all ecoregions followed this pattern. The exceptions might reflect other biological factors and environmental conditions. With more ecoclimatic variability predicted for the future, this study provides insight into how energy variability influences the geographical patterns of species richness.

File: Rowhani-Ecosystems-2008.pdf

This is a publication uploaded with a php script

Satellite image texture and a vegetation index predict avian biodiversity in the Chihuahuan Desert of New Mexico.

Predicting broad-scale patterns of biodiversity is challenging, particularly in ecosystems where traditional methods of quantifying habitat structure fail to capture subtle but potentially important variation within habitat types. With the unprecedented rate at which global biodiversity is declining, there is a strong need for improvement in methods for discerning broad-scale differences in habitat quality. Here, we test the importance of habitat structure (i.e. fine-scale spatial variability in plant growth forms) and plant productivity (i.e. amount of green biomass) for predicting avian biodiversity. We used image texture (i.e. a surrogate for habitat structure) and vegetation indices (i.e. surrogates for plant productivity) derived from Landsat Thematic Mapper (TM) data for predicting bird species richness patterns in the northern Chihuahuan Desert of New Mexico. Bird species richness was summarized for forty-two 108 ha plots in the McGregor Range of Fort Bliss Military Reserve between 1996 and 1998. Six Landsat TM bands and the normalized difference vegetation index (NDVI) were used to calculate first-order and second-order image texture measures. The relationship between bird species richness versus image texture and productivity (mean NDVI) was assessed using Bayesian model averaging. The predictive ability of the models was evaluated using leave-one-out cross-validation. Texture of NDVI predicted bird species richness better than texture of individual Landsat TM bands and accounted for up to 82.3% of the variability in species richness. Combining habitat structure and productivity measures accounted for up to 87.4% of the variability in bird species richness. Our results highlight that texture measures from Landsat TM imagery were useful for predicting patterns of bird species richness in semi-arid ecosystems and that image texture is a promising tool when assessing broad-scale patterns of biodiversity using remotely sensed data.

File: StLouis_2009_Ecography.pdf

This is a publication uploaded with a php script

Landscape-scale patterns of black-throated sparrow (Amphispiza bilineata) abundance and nest success

Analyses of avian demographic patterns across entire, contiguous landscapes are rare, but such analyses are important for understanding population dynamics. We selected the Black-throated Sparrow in the northern Chihuahuan Desert as a model to test patterns of abundance and nest success across a landscape. We integrated abundance, nest density, and nesting success measured on sampling plots with a classified satellite map of the distribution of seven habitat types to analyze spatial and temporal patterns contributing to the population dynamics of this species. Adult relative abundance ranged from ,1 bird/100 ha in pinyon-juniper habitat to 24- 39 birds/100 ha in shrubland habitats. Nest density was consistently high in mesquite, moderate to high in creosotebush, and low in black grama grassland; this value exhibited more temporal variability than relative abundance of adults. Nest success rates exhibited a strong habitat effect and ranged from 8% in mesquite to 47% in black grama grassland; overall population nest success was 0.266. In all three years, nest success in mesquite was significantly lower than in all other habitat types (P , 0.01). There was no correlation between nest success and adult relative abundance. While mesquite habitat contained about one-third of all adults in the three years of the study, it contributed as little as 10% of successful nests. In creosotebush, the relative contribution to both adult abundance and successful nests was relatively high. Mesa grassland contained relatively few adults, but up to 44% of successful nests. We discuss how habitat selection theory suggests mechanisms for the observed patterns. Mesquite appears to be a population sink for Black-throated Sparrows and may be an ecological trap. While we do not propose that there is cause for conservation concern for this widespread species, our results underscore the pitfalls associated with using adult abundance as an indicator of habitat quality. The method presented here is applicable for many species and ecosystems and, thus, may be an important tool for conservation and management, as well as a new avenue for scientific investigation of landscape-level population dynamics.

File: Pidgeon_etal_EA2003.pdf

This is a publication uploaded with a php script